Tihsrah-CD
commited on
Commit
·
c97f929
1
Parent(s):
c6e6560
Topic Classifier v2 Added
Browse filesfeat: Push updated Topic Classifier model with eval_loss 0.0233, eval_accuracy 0.9908, eval_f1 0.9908, CORPORATE_DOCUMENTS precision 1.00, FINANCIAL precision 0.95, HARMFUL precision 0.95, MEDICAL precision 0.99, accuracy 0.99, macro avg F1 0.97, weighted avg F1 0.99, support 4565 samples
- README.md +128 -0
- config.json +36 -0
- label_encoder.joblib +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Topic Classifier
|
3 |
+
|
4 |
+
This repository contains the Topic Classifier model developed by DAXA.AI. The Topic Classifier is a machine learning model designed to categorize text documents across various domains, such as corporate documents, financial texts, harmful content, and medical documents.
|
5 |
+
|
6 |
+
## Model Details
|
7 |
+
|
8 |
+
### Model Description
|
9 |
+
|
10 |
+
The Topic Classifier is a BERT-based model, fine-tuned from the `distilbert-base-uncased` model. It is intended for categorizing text into specific topics, including "CORPORATE_DOCUMENTS," "FINANCIAL," "HARMFUL," and "MEDICAL." This model streamlines text classification tasks across multiple sectors, making it suitable for various business use cases.
|
11 |
+
|
12 |
+
- **Developed by:** DAXA.AI
|
13 |
+
- **Funded by:** Open Source
|
14 |
+
- **Model type:** Text classification
|
15 |
+
- **Language(s):** English
|
16 |
+
- **License:** MIT
|
17 |
+
- **Fine-tuned from:** `distilbert-base-uncased`
|
18 |
+
|
19 |
+
### Model Sources
|
20 |
+
|
21 |
+
- **Repository:** [https://huggingface.co/daxa-ai/topic-classifier](https://huggingface.co/daxa-ai/Topic-Classifier-2)
|
22 |
+
- **Demo:** [https://huggingface.co/spaces/daxa-ai/Topic-Classifier-2](https://huggingface.co/spaces/daxa-ai/Topic-Classifier-2)
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
### How to Get Started with the Model
|
27 |
+
|
28 |
+
To use the Topic Classifier in your Python project, you can follow the steps below:
|
29 |
+
|
30 |
+
```python
|
31 |
+
# Import necessary libraries
|
32 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
33 |
+
import torch
|
34 |
+
import joblib
|
35 |
+
from huggingface_hub import hf_hub_url, cached_download
|
36 |
+
|
37 |
+
# Load the tokenizer and model
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("daxa-ai/topic-classifier")
|
39 |
+
model = AutoModelForSequenceClassification.from_pretrained("daxa-ai/topic-classifier")
|
40 |
+
|
41 |
+
# Example text
|
42 |
+
text = "Please enter your text here."
|
43 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
44 |
+
output = model(**encoded_input)
|
45 |
+
|
46 |
+
# Apply softmax to the logits
|
47 |
+
probabilities = torch.nn.functional.softmax(output.logits, dim=-1)
|
48 |
+
|
49 |
+
# Get the predicted label
|
50 |
+
predicted_label = torch.argmax(probabilities, dim=-1)
|
51 |
+
|
52 |
+
# URL of your Hugging Face model repository
|
53 |
+
REPO_NAME = "daxa-ai/topic-classifier"
|
54 |
+
|
55 |
+
# Path to the label encoder file in the repository
|
56 |
+
LABEL_ENCODER_FILE = "label_encoder.joblib"
|
57 |
+
|
58 |
+
# Construct the URL to the label encoder file
|
59 |
+
url = hf_hub_url(REPO_NAME, filename=LABEL_ENCODER_FILE)
|
60 |
+
|
61 |
+
# Download and cache the label encoder file
|
62 |
+
filename = cached_download(url)
|
63 |
+
|
64 |
+
# Load the label encoder
|
65 |
+
label_encoder = joblib.load(filename)
|
66 |
+
|
67 |
+
# Decode the predicted label
|
68 |
+
decoded_label = label_encoder.inverse_transform(predicted_label.numpy())
|
69 |
+
|
70 |
+
print(decoded_label)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Training Details
|
74 |
+
|
75 |
+
### Training Data
|
76 |
+
|
77 |
+
The training dataset consists of 29,286 entries, categorized into four distinct labels. The distribution of these labels is presented below:
|
78 |
+
|
79 |
+
| Document Type | Instances |
|
80 |
+
| ------------------- | --------- |
|
81 |
+
| CORPORATE_DOCUMENTS | 17,649 |
|
82 |
+
| FINANCIAL | 3,385 |
|
83 |
+
| HARMFUL | 2,388 |
|
84 |
+
| MEDICAL | 5,864 |
|
85 |
+
|
86 |
+
### Evaluation
|
87 |
+
|
88 |
+
#### Testing Data & Metrics
|
89 |
+
|
90 |
+
The model was evaluated on a dataset consisting of 4,565 entries. The distribution of labels in the evaluation set is shown below:
|
91 |
+
|
92 |
+
| Document Type | Instances |
|
93 |
+
| ------------------- | --------- |
|
94 |
+
| CORPORATE_DOCUMENTS | 3,051 |
|
95 |
+
| FINANCIAL | 409 |
|
96 |
+
| HARMFUL | 246 |
|
97 |
+
| MEDICAL | 859 |
|
98 |
+
|
99 |
+
The evaluation metrics include precision, recall, and F1-score, calculated for each label:
|
100 |
+
|
101 |
+
| Document Type | Precision | Recall | F1-Score | Support |
|
102 |
+
| ------------------- | --------- | ------ | -------- | ------- |
|
103 |
+
| CORPORATE_DOCUMENTS | 1.00 | 1.00 | 1.00 | 3,051 |
|
104 |
+
| FINANCIAL | 0.95 | 0.96 | 0.96 | 409 |
|
105 |
+
| HARMFUL | 0.95 | 0.95 | 0.95 | 246 |
|
106 |
+
| MEDICAL | 0.99 | 1.00 | 0.99 | 859 |
|
107 |
+
| Accuracy | | | 0.99 | 4,565 |
|
108 |
+
| Macro Avg | 0.97 | 0.98 | 0.97 | 4,565 |
|
109 |
+
| Weighted Avg | 0.99 | 0.99 | 0.99 | 4,565 |
|
110 |
+
|
111 |
+
#### Test Data Evaluation Results
|
112 |
+
|
113 |
+
The model's evaluation results are as follows:
|
114 |
+
|
115 |
+
- **Evaluation Loss:** 0.0233
|
116 |
+
- **Accuracy:** 0.9908
|
117 |
+
- **Precision:** 0.9909
|
118 |
+
- **Recall:** 0.9908
|
119 |
+
- **F1-Score:** 0.9908
|
120 |
+
- **Evaluation Runtime:** 30.1149 seconds
|
121 |
+
- **Evaluation Samples Per Second:** 151.586
|
122 |
+
- **Evaluation Steps Per Second:** 2.391
|
123 |
+
|
124 |
+
## Conclusion
|
125 |
+
|
126 |
+
The Topic Classifier achieves high accuracy, precision, recall, and F1-score, making it a reliable model for categorizing text across the domains of corporate documents, financial content, harmful content, and medical texts. The model is optimized for immediate deployment and works efficiently in real-world applications.
|
127 |
+
|
128 |
+
For more information or to try the model yourself, check out the public space [here](https://huggingface.co/spaces/daxa-ai/Topic-Classifier-2).
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "CORPORATE_DOCUMENTS",
|
13 |
+
"1": "FINANCIAL",
|
14 |
+
"2": "HARMFUL",
|
15 |
+
"3": "MEDICAL"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"label2id": {
|
19 |
+
"CORPORATE_DOCUMENTS": 0,
|
20 |
+
"FINANCIAL": 1,
|
21 |
+
"HARMFUL": 2,
|
22 |
+
"MEDICAL": 3
|
23 |
+
},
|
24 |
+
"max_position_embeddings": 512,
|
25 |
+
"model_type": "distilbert",
|
26 |
+
"n_heads": 12,
|
27 |
+
"n_layers": 6,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"qa_dropout": 0.1,
|
30 |
+
"seq_classif_dropout": 0.2,
|
31 |
+
"sinusoidal_pos_embds": false,
|
32 |
+
"tie_weights_": true,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.45.1",
|
35 |
+
"vocab_size": 30522
|
36 |
+
}
|
label_encoder.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecc34413f18d00dd522f2996ce202a485c39fc1e0def340590a6469914332400
|
3 |
+
size 582
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01349bd229a507099512340ff61bf05d9a05fc96556d78f49f9338025ff60fa7
|
3 |
+
size 267860714
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "DistilBertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|