Chapter 2

K-Means

Joydeep Ghosh and Alexander Liu

Contents

2.1 IntrodUCtioniuiiniieii e 21
2.2 The k-means Algorithm i 22
2.3 Available SOftware ... e 26
2.4 EXAMPIES ..ottt e 27
2.5 Advanced TOPICS .. .vvvtnin ettt 30
2.6 SUIMMALY ...ttt ettt et e ettt e et e e e e 32
2.7 EXOICISES vttt ittt et e et et e e e 33
R CIeNCES ..ottt 34

2.1 Introduction

In this chapter, we describe the k-means algorithm, a straightforward and widely
used clustering algorithm. Given a set of objects (records), the goal of clustering
or segmentation is to divide these objects into groups or “clusters” such that objects
within a group tend to be more similar to one another as compared to objects belonging
to different groups. In other words, clustering algorithms place similar points in the
same cluster while placing dissimilar points in different clusters. Note that, in contrast
to supervised tasks such as regression or classification where there is a notion of a
target value or class label, the objects that form the inputs to a clustering procedure
do not come with an associated target. Therefore, clustering is often referred to
as unsupervised learning. Because there is no need for labeled data, unsupervised
algorithms are suitable for many applications where labeled data is difficult to obtain.
Unsupervised tasks such as clustering are also often used to explore and characterize
the dataset before running a supervised learning task. Since clustering makes no use
of class labels, some notion of similarity must be defined based on the attributes of the
objects. The definition of similarity and the method in which points are clustered differ
based on the clustering algorithm being applied. Thus, different clustering algorithms
are suited to different types of datasets and different purposes. The “best” clustering
algorithm to use therefore depends on the application. It is not uncommon to try
several different algorithms and choose depending on which is the most useful.

21

© 2009 by Taylor & Francis Group, LLC

22 K-Means

The k-means algorithm is a simple iterative clustering algorithm that partitions
a given dataset into a user-specified number of clusters, k. The algorithm is simple
to implement and run, relatively fast, easy to adapt, and common in practice. It is
historically one of the most important algorithms in data mining.

Historically, k-means in its essential form has been discovered by several re-
searchers across different disciplines, most notably by Lloyd (1957, 1982)[16],!
Forgey (1965) [9], Friedman and Rubin (1967) [10], and McQueen (1967) [17]. A
detailed history of k-means along with descriptions of several variations are given
in Jain and Dubes [13]. Gray and Neuhoff [11] provide a nice historical background
for k-means placed in the larger context of hill-climbing algorithms.

In the rest of this chapter, we will describe how k-means works, discuss the limi-
tations of k-means, give some examples of k-means on artificial and real datasets,
and briefly discuss some extensions to the k-means algorithm. We should note that
our list of extensions to k-means is far from exhaustive, and the reader is encouraged
to continue their own research on the aspect of k-means of most interest to them.

2.2 The k-means Algorithm

The k-means algorithm applies to objects that are represented by points in a
d-dimensional vector space. Thus, it clusters a set of d-dimensional vectors, D =
{xili = 1,..., N}, where x; € i¢ denotes the ith object or “data point.” As discussed
in the introduction, k-means is a clustering algorithm that partitions D into k clus-
ters of points. That is, the k-means algorithm clusters all of the data points in D
such that each point x; falls in one and only one of the k partitions. One can keep
track of which point is in which cluster by assigning each point a cluster ID. Points
with the same cluster ID are in the same cluster, while points with different cluster
IDs are in different clusters. One can denote this with a cluster membership vector m
of length N, where m; is the cluster ID of x;.

The value of k is an input to the base algorithm. Typically, the value for & is based
on criteria such as prior knowledge of how many clusters actually appear in D, how
many clusters are desired for the current application, or the types of clusters found by
exploring/experimenting with different values of k. How k is chosen is not necessary
for understanding how k-means partitions the dataset D, and we will discuss how
to choose k when it is not prespecified in a later section.

In k-means, each of the k clusters is represented by a single point in R¢. Let us
denote this set of cluster representatives as the set C = {¢j|j = 1, ..., k}. These k
cluster representatives are also called the cluster means or cluster centroids; we will
discuss the reason for this after describing the k-means objective function.

ILloyd first described the algorithm in a 1957 Bell Labs technical report, which was finally published in
1982.

© 2009 by Taylor & Francis Group, LLC

2.2 The k-means Algorithm 23

In clustering algorithms, points are grouped by some notion of “closeness” or
“similarity.” In k-means, the default measure of closeness is the Euclidean distance.
In particular, one can readily show that k-means attempts to minimize the following
nonnegative cost function:

N
Cost="> (argmin;||x; — ¢j||3) 2.1)
i=1
In other words, k-means attempts to minimize the total squared Euclidean distance
between each point x; and its closest cluster representative ¢;. Equation 2.1 is often
referred to as the k-means objective function.

The k-means algorithm, depicted in Algorithm 2.1, clusters D in an iterative
fashion, alternating between two steps: (1) reassigning the cluster ID of all points in
D and (2) updating the cluster representatives based on the data points in each cluster.
The algorithm works as follows. First, the cluster representatives are initialized by
picking k points in 9%¢. Techniques for selecting these initial seeds include sampling
at random from the dataset, setting them as the solution of clustering a small subset
of the data, or perturbing the global mean of the data k times. In Algorithm 2.1, we
initialize by randomly picking k points. The algorithm then iterates between two steps
until convergence.

Step 1: Data assignment. Each data point is assigned to its closest centroid, with
ties broken arbitrarily. This results in a partitioning of the data.

Step 2: Relocation of “means.” Each cluster representative is relocated to the
center (i.e., arithmetic mean) of all data points assigned to it. The rationale
of this step is based on the observation that, given a set of points, the single best
representative for this set (in the sense of minimizing the sum of the squared
Euclidean distances between each point and the representative) is nothing but
the mean of the data points. This is also why the cluster representative is often
interchangeably referred to as the cluster mean or cluster centroid, and where
the algorithm gets its name from.

The algorithm converges when the assignments (and hence the ¢; values) no longer
change. One can show that the k-means objective function defined in Equation 2.1
will decrease whenever there is a change in the assignment or the relocation steps,
and convergence is guaranteed in a finite number of iterations.

Note that each iteration needs N x k comparisons, which determines the time
complexity of one iteration. The number of iterations required for convergence varies
and may depend on N, but as a first cut, k-means can be considered linear in the
dataset size. Moreover, since the comparison operation is linear in d, the algorithm is
also linear in the dimensionality of the data.

Limitations. The greedy-descent nature of k-means on a nonconvex cost im-
plies that the convergence is only to a local optimum, and indeed the algorithm
is typically quite sensitive to the initial centroid locations. In other words,

© 2009 by Taylor & Francis Group, LLC

24 K-Means

Algorithm 2.1 The k-means algorithm

Input: Dataset D, number clusters k
Output: Set of cluster representatives C, cluster membership vector m
/* Initialize cluster representatives C */
Randomly choose k data points from D
5: Use these k points as initial set of cluster representatives C
repeat
/* Data Assignment */
Reassign points in D to closest cluster mean
Update m such that m; is cluster ID of ith point in D
10: /* Relocation of means */
Update C such that c; is mean of points in jth cluster

until convergence of objective function ZIN= ((argminj||x; — ¢ |%)

initializing the set of cluster representatives C differently can lead to very
different clusters, even on the same dataset D. A poor initialization can lead
to very poor clusters. We will see an example of this in the next section when
we look at examples of k-means applied to artificial and real data. The local
minima problem can be countered to some extent by running the algorithm
multiple times with different initial centroids and then selecting the best result,
or by doing limited local search about the converged solution. Other approaches
include methods such as those described in [14] that attempt to keep k-means
from converging to local minima. [8] also contains a list of different methods
of initialization, as well as a discussion of other limitations of k-means.

As mentioned, choosing the optimal value of k may be difficult. If one has knowledge
about the dataset, such as the number of partitions that naturally comprise the dataset,
then that knowledge can be used to choose k. Otherwise, one must use some other
criteria to choose k, thus solving the model selection problem. One naive solution
is to try several different values of k and choose the clustering which minimizes the
k-means objective function (Equation 2.1). Unfortunately, the value of the objective
function is not as informative as one would hope in this case. For example, the cost
of the optimal solution decreases with increasing k till it hits zero when the number
of clusters equals the number of distinct data points. This makes it more difficult to
use the objective function to (a) directly compare solutions with different numbers
of clusters and (b) find the optimum value of k. Thus, if the desired & is not known
in advance, one will typically run k-means with different values of k, and then use
some other, more suitable criterion to select one of the results. For example, SAS
uses the cube-clustering criterion, while X-means adds a complexity term (which
increases with k) to the original cost function (Equation 2.1) and then identifies the k
which minimizes this adjusted cost [20]. Alternatively, one can progressively increase
the number of clusters, in conjunction with a suitable stopping criterion. Bisecting
k-means [21] achieves this by first putting all the data into a single cluster, and then
recursively splitting the least compact cluster into two clusters using 2-means. The

© 2009 by Taylor & Francis Group, LLC

2.2 The k-means Algorithm 25

celebrated LBG algorithm [11] used for vector quantization doubles the number of
clusters till a suitable code-book size is obtained. Both these approaches thus alleviate
the need to know k beforehand. Many other researchers have studied this problem,
such as [18] and [12].

In addition to the above limitations, k-means suffers from several other problems
that can be understood by first noting that the problem of fitting data using a mixture
of k Gaussians with identical, isotropic covariance matrices (X = oI), where I is
the identity matrix, results in a “soft” version of k-means. More precisely, if the soft
assignments of data points to the mixture components of such a model are instead
hardened so that each data point is solely allocated to the most likely component
[3], then one obtains the k—-means algorithm. From this connection it is evident that
k-means inherently assumes that the dataset is composed of a mixture of k balls or
hyperspheres of data, and each of the k clusters corresponds to one of the mixture
components. Because of this implicit assumption, k-means will falter whenever
the data is not well described by a superposition of reasonably separated spherical
Gaussian distributions. For example, k-means will have trouble if there are non-
convex-shaped clusters in the data. This problem may be alleviated by rescaling the
data to “whiten” it before clustering, or by using a different distance measure that is
more appropriate for the dataset. For example, information-theoretic clustering uses
the KL-divergence to measure the distance between two data points representing two
discrete probability distributions. It has been recently shown that if one measures
distance by selecting any member of a very large class of divergences called Bregman
divergences during the assignment step and makes no other changes, the essential
properties of k-means, including guaranteed convergence, linear separation bound-
aries, and scalability, are retained [1]. This result makes k-means effective for a
much larger class of datasets so long as an appropriate divergence is used.

Another method of dealing with nonconvex clusters is by pairing k-means with
another algorithm. For example, one can first cluster the data into a large number of
groups using k—-means. These groups are then agglomerated into larger clusters using
single link hierarchical clustering, which can detect complex shapes. This approach
also makes the solution less sensitive to initialization, and since the hierarchical
method provides results at multiple resolutions, one does not need to worry about
choosing an exact value for k either; instead, one can simply use a large value for &
when creating the initial clusters.

The algorithm is also sensitive to the presence of outliers, since “mean” is not a
robust statistic. A preprocessing step to remove outliers can be helpful. Postprocessing
the results, for example, to eliminate small clusters, or to merge close clusters into
a large cluster, is also desirable. Ball and Hall’s ISODATA algorithm from 1967
effectively used both pre- and postprocessing on k-means.

Another potential issue is the problem of “empty” clusters [4]. When running k-
means, particularly with large values of k£ and/or when data resides in very high
dimensional space, it is possible that at some point of execution, there exists a cluster
representative c; such that all points x; in D are closer to some other cluster repre-
sentative that is not ¢ ;. When points in D are assigned to their closest cluster, the jth
cluster will have zero points assigned to it. That is, cluster j is now an empty cluster.

© 2009 by Taylor & Francis Group, LLC

26 K-Means

The standard algorithm does not guard against empty clusters, but simple extensions
(such as reinitializing the cluster representative of the empty cluster or “stealing”
some points from the largest cluster) are possible.

2.3 Available Software

Because of the k-means algorithm’s simplicity, effectiveness, and historical impor-
tance, software to run the k-means algorithm is readily available in several forms. It
is a standard feature in many popular data mining software packages. For example, it
can be found in Weka or in SAS under the FASTCLUS procedure. It is also commonly
included as add-ons to existing software. For example, several implementations of
k-means are available as parts of various toolboxes in MATLAB®. k-means is
also available in Microsoft Excel after adding XLMiner. Finally, several stand-alone
versions of k-means exist and can be easily found on the Internet.

The algorithm is also straightforward to code, and the reader is encouraged to create
their own implementation of k-means as an exercise.

6_

_96—4—202468

Figure 2.1 The artificial dataset used in our example; the data is drawn from a
mixture of four Gaussians.

© 2009 by Taylor & Francis Group, LLC

2.4 Examples 27

24 Examples

Let us first show an example of k-means on an artificial dataset to illustrate how
k-means works. We will use artificial data drawn from four 2-D Gaussians and
use a value of k = 4; the dataset is illustrated in Figure 2.1. Data drawn from a
particular Gaussian is plotted in the same color in Figure 2.1. The blue data consists
of 200 points drawn from a Gaussian with mean at (—3, —3) and covariance ma-
trix .0625 x I, where I is the identity matrix. The green data consists of 200 points
drawn from a Gaussian with mean at (3, —3) and covariance matrix I. Finally, we
have overlapping yellow and red data drawn from two nearby Gaussians. The yellow
data consists of 150 points drawn from a Gaussian with mean (—1, 2) and covariance
matrix I, while the red data consists of 150 points drawn from a Gaussian with mean
(1,2) and covariance matrix I. Despite the overlap between the red and yellow points,
one would expect k-means to do well since we do have the right value of k and the
data is generated by a mixture of spherical Gaussians, thus matching nicely with the
underlying assumptions of the algorithm.

The first step in k—-means is to initialize the cluster representatives. This is illus-
trated in Figure 2.2a, where k points in the dataset have been picked randomly. In this
figure and the following figures, the cluster means C will be represented by a large
colored circle with a black outline. The color corresponds to the cluster ID of that
particular cluster, and all points assigned to that cluster are represented as points of
the same color. These colors have no definite connection with the colors in Figure 2.1
(see Exercise 7). Since points have not been assigned cluster IDs in Figure 2.2a, they
are plotted in black.

The next step is to assign all points to their closest cluster representative; this is
illustrated in Figure 2.2b, where each point has been plotted to match the color of its
closest cluster representative. The third step in k-means is to update the k cluster
representatives to correspond to the mean of all points currently assigned to that clus-
ter. This step is illustrated in Figure 2.2c. In particular, we have plotted the old cluster
representatives with a black “X” symbol and the new, updated cluster representatives
as a large colored circle with a black outline. There is also a line connecting the old
cluster mean with the new, updated cluster mean. One can observe that the cluster
representatives have moved to reflect the current centroids of each cluster.

The k-means algorithm now iterates between two steps until convergence: reas-
signing points in D to their closest cluster representative and updating the k cluster
representatives. We have illustrated the first four iterations of k-means in Figures
2.2 and 2.3. The final clusters after convergence are shown in Figure 2.3d. Note that
this example took eight iterations to converge. Visually, however, there is little change
in the diagrams between iterations 4 and 8, and these pictures are omitted for space
reasons. As one can see by comparing Figure 2.3d with Figure 2.1, the clusters found
by k-means match well with the true, underlying distribution.

In the previous section, we mentioned that k-means is sensitive to the initial points
picked as clusters. In Figure 2 .4, we show what happens when the k representatives are

© 2009 by Taylor & Francis Group, LLC

28 K-Means
Initial cluster means Iteration 1: Assigning cluster IDs
6r 6
4r 4
° ° °
2r ° 2
or 0
-2t -2 . a "
_al -4 AL LN
@8
-6 -6 5
-6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4 6
(@) (b)
Iteration 1: Estimating cluster means 6 Iteration 2: Assigning cluster IDs
6.
ar 4
2r 2
or 0
ot . o ° -2 a @
L w ° oty
‘ﬂ%@& PG 5o
-4 °ftf°%3’%m‘§:%u -4 oo @,
@ee o °
-6 5 -6 +
% -4 -2 0 2 4 6 8 6 -4 -2 0 2 4 6
(c) (d)
6.
4.
2.
O.
-2t
_4 ul%puq:g??h 4
-6 a -6
-6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4 6

Figure 2.2 k-means on artificial data.

© 2009 by Taylor & Francis Group, LLC

2.4 Examples 29

Iteration 3: Estimating cluster means Iteration 4: Assigning cluster IDs
6 6
4r 4
2r 2
or 0

-4 -4
-6 —6
-6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4 6 8
(@) (b)
lteration 4: Estimating cluster means 6
6 -
4
4 -
2
2 -
0
O F
-2
2 <)
" ’ 4 ®
—4f
-6
6 -6 -4 -2 0 2 4 6 8
-6 -4 -2 0 2 4 6 8 (d)

Figure 2.3 k-means on artificial data. (Continued from Figure 2.2.)

initialized poorly on the same artificial dataset used in Figures 2.2 and 2.3. Figures 2.4a
and ¢ show two initializations that lead to poor clusters in Figures 2.4b and d. These
results are considered poor since they do not correspond well to the true underlying
distribution.

Finally, let us examine the performance of k-means on a simple, classic bench-
mark dataset. In our example, we use the Iris dataset (available from the UCI data
mining repository), which contains 150 data points from three classes. Each class rep-
resents a different species of the Iris flower, and there are 50 points from each class.
While there are four dimensions (representing sepal width, sepal length, petal width,
and petal length), only two dimensions (petal width and petal length) are necessary
to discriminate the three classes. The Iris dataset is plotted in Figure 2.5a along the
dimensions of petal width and petal length.

In Figure 2.5b, we show an example of the k-means algorithm run on the Iris
dataset with k = 3, using only the attributes of petal width and petal length. The

© 2009 by Taylor & Francis Group, LLC

Clusters after convergence

on & oo
aBugte
. e,

Clusters after convergence

30 K-Means
Initial cluster means
6r 6
at 4
(o}
2r 2
of ° 0
-2r [} -2
& (o]
-4t -4
% 4 2 o0 2 4 8 %
(a)
Initial cluster means
6r 6
4t 4
2 2 2
0_ 0
°
o} -2
—4f -4
_ -6
% 4 2 0 2 4 8 -6

Figure 2.4 Examples of poor clustering after poor initialization; these resultant
clusters are considered “poor” in the sense that they do not match well with the true,

underlying distribution.

k-means algorithm is able to cluster the data points such that each cluster is com-
posed mostly of flowers from the same species.

2.5 Advanced Topics

In this section, we discuss some generalizations, connections, and extensions that have
been made to the k-means algorithm. However, we should note that this section is
far from exhaustive. Research on k-means has been extensive and is still active.
Instead, the goal of this section is to complement some of the previously discussed

issues regarding k-means.

© 2009 by Taylor & Francis Group, LLC

2.5 Advanced Topics 31

Iris Dataset Iris dataset: clusters after convergence
2.5 Y. 2.5
5 5 5
£ £
T 1.5 T 1.5
= =
g [
e ! e 1
0.5 0.5
...... | Q
01 2 3 4 5 6 7 01 2 3 4 5 6 7
Petal Length Petal Length
(@ (b)

Figure 2.5 (a) Iris dataset; each color is a different species of Iris; (b) Result of
k-means on Iris dataset; each color is a different cluster; note that there is not
necessarily a correspondence between colors in (a) and (b) (see Exercise 7).

As mentioned earlier, k-means is closely related to fitting a mixture of k isotropic
Gaussians to the data. Moreover, the generalization of the distance measure to all
Bregman divergences is related to fitting the data with a mixture of X components
from the exponential family of distributions. Another broad generalization is to view
the “means” as probabilistic models instead of points in R¢. Here, in the assignment
step, each data point is assigned to the model most likely to have generated it. In the
“relocation” step, the model parameters are updated to best fit the assigned datasets.
Such model-based k-means [23] allow one to cater to more complex data, for
example, sequences described by Hidden Markov models.

One can also “kernelize” k-means [5]. Though boundaries between clusters are
still linear in the implicit high-dimensional space, they can become nonlinear when
projected back to the original space, thus allowing kernel k-means to deal with
more complex clusters. Dhillon et al. [5] have shown a close connection between
kernel k-means and spectral clustering. The K-medoid [15] algorithm is similar to
k-means, except that the centroids have to belong to the dataset being clustered.
Fuzzy c-means [6] is also similar, except that it computes fuzzy membership functions
for each cluster rather than a hard one.

To deal with very large datasets, substantial effort has also gone into further speed-
ing up k-means, most notably by using kd-trees [19] or exploiting the triangular
inequality [7] to avoid comparing each data point with all the centroids during the
assignment step.

Finally, we discuss two straightforward extensions of k-means. The first is a
variant of k-means called soft k-means. In the standard k-means algorithm,
each point x; belongs to one and only one cluster.In soft k-means, this constraint
isrelaxed, and each point x; can belong to each cluster with some unknown probability.
Insoft k-means,foreach pointx;,one maintains a set of k probabilities or weights

© 2009 by Taylor & Francis Group, LLC

32 K-Means

that describe the likelihood that x; belongs to each cluster. These weights are based
on the distance of x; to each of the cluster representatives C, where the probability
that x; is from cluster j is proportional to the similarity between x; and ¢, . The cluster
representatives in this case are found by taking the expected value of the cluster mean
over all points in the dataset D.

The second extension of k—-means deals with semisupervised learning. In the intro-
duction, we made a distinction between supervised learning and unsupervised learn-
ing. In brief, supervised learning makes use of class labels while unsupervised learning
does not. The k-means algorithm is a purely unsupervised algorithm. There also
exists a category of learning algorithms called semisupervised algorithms. Semisu-
pervised learning algorithms are capable of making use of both labeled and unlabeled
data. Semisupervised learning is a useful compromise between purely supervised
methods and purely unsupervised methods. Supervised learning methods typically
require very large amounts of labeled data; semisupervised methods are useful when
very few labeled examples are available. Unsupervised learning methods, which do
not look at class labels, may learn models inappropriate for the application at hand.
When running k-means, one has no control over the final clusters that are discov-
ered; these clusters may or may not correspond well to some underlying concept
that one is interested in. For example, in Figure 2.5b, a poor initialization may have
resulted in clusters which do not correspond well to the Iris species in the dataset.
Semisupervised methods, which can take guidance in the form of labeled points, are
more likely to create clusters which correspond to a given set of class labels.

Research into semisupervised variants of k—-means include [22] and [2]. One of the
algorithms from [2] called seeded k-means is a simple extension to k-means
that uses labeled data to help initialize the value of k and the cluster representatives
C . In this approach, k is chosen to be the same as the number of classes in the labeled
data, while c; is initialized as the mean of all labeled points in the jth class. Note that,
unlike unsupervised k-means, there is now a known correspondence between the
jth cluster and the jth class. After initialization, seeded k-means iterates over
the same two steps as k-means (updating cluster memberships and updating cluster
means) until convergence.

2.6 Summary

The k-means algorithm is a simple iterative clustering algorithm that partitions a
dataset into k clusters. At its core, the algorithm works by iterating over two steps: (1)
clustering all points in the dataset based on the distance between each point and its
closest cluster representative and (2) reestimating the cluster representatives. Limita-
tions of the k-means algorithm include the sensitivity of k-means to initialization
and determining the value of k.

Despite its drawbacks, k-means remains the most widely used partitional clus-
tering algorithm in practice. The algorithm is simple, easily understandable, and

© 2009 by Taylor & Francis Group, LLC

2.7 Exercises 33

reasonably scalable, and can be easily modified to deal with different scenarios such
as semisupervised learning or streaming data. Continual improvements and general-
izations of the basic algorithm have ensured its continued relevance and gradually
increased its effectiveness as well.

2.7 Exercises

1. Using the standard benchmark Iris dataset (available online from the UCI
dataset repository), run k-means to obtain results similar to Figure 2.5b. It is
sufficient to look at only the attributes of “petal width” and “petal length.”

What happens when one uses a value for k other than three? How do different
cluster initializations affect the final clusters? Why are these results potentially
different than the results given in Figure 2.5b?

2. Prove that the value of the k-means objective function converges when k-
means is run.

3. Describe three advantages and three disadvantages of k-means compared to
other clustering methods (e.g., agglomerative clustering).

4. Describe or plot a two-dimensional example where k-means would be un-
suitable for finding clusters.

5. In k-means, after the cluster means have converged, what is the shape of the
cluster boundaries? How is this related to Voronoi tesselations?

6. Does k-means guarantee that points within the same cluster are more similar
than points from different clusters? That is, prove or disprove that, after k-
means has converged, the squared Euclidean distance between two points in
the same cluster is always less than the squared Euclidean distance between
two points from different clusters.

7. Assume one is given a hypothetical dataset D consisting of 10 points. k-means
is run twice on this dataset. Let us denote the cluster IDs of the 10 points in D
as a vector m, where m;, the ith entry in the vector, is the cluster ID of the ith
point in D.

The cluster IDs of the 10 points from the first time k-means is run are
m!' =[1,1,1,2,2,2,3,3,3, 3], while the cluster IDs obtained from the second
run of k-means arem? = [3,3,3,1,1,1,2,2,2,2].

What is the difference between the two sets of cluster IDs? Do the actual
cluster IDs of the points in D mean anything? What does this imply when
comparing the results of different clustering algorithms? What does this imply
when comparing the results of clustering algorithms with known class labels?

8. Create your own implementation of k-means and a method of creating artifi-
cial data drawn from & Gaussian distributions. Test your code on the artificial
data and keep track of how many iterations it takes for k-means to converge.

© 2009 by Taylor & Francis Group, LLC

34

9.

10.

K-Means

Using the code generated in the previous exercise, plot the average distance
of each point from its cluster mean versus the number of clusters k. Is the
average distance of a point from its cluster mean a good method of automatically
determining the number of clusters k? Why or why not? What can potentially
happen when the number of clusters & is equal to the number of points in the
dataset?

Research and describe an extension to the standard k-means algorithm.
Depending on individual interests, this could include recent work on mak-
ing k-means more computationally efficient, work on extending k-means
to semisupervised learning, work on adapting other distance metrics into
k-means, or many other possibilities.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

A. Banerjee, S. Merugu, 1. Dhillon, and J. Ghosh. “Clustering with Bregman
divergences,” Journal of Machine Learning Research (JMLR),vol.6,pp. 1705—
1749, 2005.

S.Basu, A.Banerjee, and R. Mooney. “Semi-supervised clustering by seeding,”
International Conference on Machine Learning 2002, pp. 27-34,2002.

C.M.Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). 2006.

P.S.Bradley, K. P. Bennett, and A. Demiriz. “Constrained k-means clustering,”
Technical Report MSR-TR-2000-65, 2000.

I. S. Dhillon, Y. Guan, and B. Kulis. “Kernel k-means: Spectral clustering and
normalized cuts,” KDD 2004, pp. 551-556, 2004.

J. C. Dunn. “A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters,” Journal of Cybernetics, vol. 3, pp. 32-57,
1974.

C. Elkan. “Using the triangle inequality to accelerate k-means,” International
Conference on Machine Learning 2003, pp. 147-153,2003.

C. Elkan. “Clustering with k-means: Faster, smarter, cheaper,” Keynote talk at
Workshop on Clustering High-Dimensional Data, SIAM International Confer-
ence on Data Mining,2004.

E. Forgey. “Cluster analysis of multivariate data: Efficiency vs. interpretability
of classification,” Biometrics, 21, pp. 768, 1965.

H. P. Friedman and J. Rubin. “On some invariant criteria for grouping data,”
Journal of American Statistical Association, 62, pp. 1159-1178, 1967.

© 2009 by Taylor & Francis Group, LLC

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

References 35

R. M. Gray and D. L. Neuhoff. “Quantization,” IEEE Transactions on Infor-
mation Theory, vol. 44, no. 6, pp. 2325-2384, 1998.

G. Hamerly and C. Elkan. “Learning the k in k-means,” Neural Information
Processing Systems, 2003.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data, Prentice Hall,
1988.

T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y.
Wu. “A local search approximation algorithm for k-means clustering,” Com-
putational Geometry: Theory and Applications, 28 (2004), pp. 89-112, 2004.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis, 1990.

S.P.Lloyd. “Least squares quantization in PCM,” unpublished Bell Lab. Tech.
Note, portions presented at the Institute of Mathematical Statistics Meet.,
Atlantic City, NJ, Sept. 1957. Also, IEEE Trans. Inform. Theory (Special Issue
on Quantization), vol. IT-28, pp. 129-137, Mar. 1982.

J. McQueen. “Some methods for classification and analysis of mutivariate
observations,” Proc. 5th Berkeley Symp. Math., Statistics and Probability, 1,
pp- 281-296, 1967.

G. W. Milligan. “Clustering validation: Results and implications for applied
analyses,” Clustering and Classification, P. Arabie, L. J. Hubery, and G. De
Soete, ed., pp. 341-375, 1996.

D. Pelleg and A. Moore. “Accelerating exact k-means algorithms with geomet-
ric reasoning,” KDD 1999, pp. 227-281, 1999.

D. Pelleg and A. Moore. “X-means: Extending k-means with efficient estima-

tion of the number of clusters,” International Conference on Machine Learning
2000, pp. 727-134,2000.

M. Steinbach, G. Karypis,and V. Kumar. “A comparison of document clustering
techniques,” Proc. KDD Workshop on Text Mining,2000.

K. Wagstaff, C. Cardie, S. Rogers, S. Schrodl. “Constrained k-means clustering
with background knowledge,” International Conference on Machine Learning
2001, pp. 577-584, 2001.

S. Zhong and J. Ghosh. “A unified framework for model-based clustering,”
Journal of Machine Learning Research (JMLR), vol. 4, pp. 1001-1037, 2003.

© 2009 by Taylor & Francis Group, LLC

	The Top Ten Algorithms in Data Mining
	Table of Contents
	Chapter 2: K-Means
	2.1 Introduction
	2.2 The k-means Algorithm
	2.3 Available Software
	2.4 Examples
	2.5 Advanced Topics
	2.6 Summary
	2.7 Exercises
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

