
5 Sociolinguistics

The main data that we study in sociolinguistics are counts of the number of realizations of 
sociolinguistic variables.  For example, a phonological variable might span the different 
realizations of a vowel. In some words, like pen, I say [] so that pen rhymes with pin, while 
other speakers say [].  The data that go into a quantitative analysis of this phonological variable 
are the categorical judgements of the researcher - did the talker say [] or []?  Each word of 
interest gets scored for the different possible pronunciations of // and several factors that might 
influence the choice of variant are also noted.  For example, my choice of [] in pen is probably 
influenced by my native dialect of English and the fact that this // occurs with a following /n/ in 
the syllable coda.  Perhaps also, the likelihood that I will say [] is influenced by my age, 
socioeconomic status, gender, current peer group, etc.

Other sociolinguistic variables have to do with other domains of language.  For example, we can 
count how many times a person uses a particular verb inflection and try to predict this 
morphological usage as a function of syntactic environment, social group, etc.  Or we could count 
how many times a person uses a particular syntactic construction, and try to model this aspect 
of language behavior by noting relevant linguistic and social aspects of the performance.

The key difference between these data and the data that we typically deal with in phonetics and 
psycholinguistics is that the critical variable - the dependent measure - is nominal.  We aren’t 
measuring a property like formant frequency or reaction time on a continuous scale, but instead 
are noting which of a limited number of possible categorical variants was produced by the 
speaker.  So, in this chapter we turn to a couple of different analytical techniques to find patterns 
in these nominal response measures.  

Of course, other areas of linguistics also deal with nominal data.  In phonetics we sometimes 
count how many times a listener chooses one alternative or another in a listening task.  In 
phonology we may be interested in how often a feature is used in the languages of the world, or 
how often a “free” variant pronunciation is used.  In syntax, as we will see in chapter 7, we 
analyze counts of the number of times particular constructions are used in different contexts. The 
methods discussed in this chapter on sociolinguistics are thus applicable in these and other 
subdisciplines of linguistics.

5.1 When the data are counts - contingency tables.

We can compare the observed frequency of occurrence of an event with its theoretically expected 
frequency of occurrence using the χ2 distribution. In some situations you can posit some 
expected frequency values on the basis of a theory. For example, you might expect that the 
number of men and women in a statistics class to be about equal because there are about as many 
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men as there are women in the world.  So if the class has a total of 20 students the expected 
frequency of men is 10 and the expected frequency of women is 10.  

In another type of case, if we assume that a set of observations comes from a normal distribution 
then we should find that most of the observations fall near the mean value and that a histogram of 
the data should have frequency counts that fits the normal curve defined by the data set’s mean 
and standard deviation.

The difference between the observed counts and counts expected given a particular hypothesis, 
say that there should be an equal number of men and women in the class or that the data should 
follow a normal curve, can be measured on the χ2 distribution.  If the difference between 
observed and expected frequency is much greater than chance you might begin to wonder what is 
going on.  Perhaps an explanation is called for. 

To calculate χ2 from observed and expected frequencies you sum over all of the cells in a 
contingency table the squared difference of the observed count (o = say 5 men in the class) minus 
the expected count (e = 10 men) divided by the expected count.  For the case in which we have 5 
men and 15 women in a class of 20, and we expect 10 men and 10 women, the χ2 value that tests 
the accuracy of our expectation is χ2 = (5-10)2/10 + (15-10)2/10 = 2.5 + 2.5 = 5.

    

€ 

χ 2 =
(oi − ei )

2

eii
∑ calculating χ2 from observed and expected counts

To determine the correctness of the assumption that we used in deriving the expected values, we 
compare the calculated value of χ2  with a critical value of χ2.  If the calculated (observed) value 
of χ2 is larger than the critical value then the assumption that gives us the expected values is 
false. Because the distribution is different for different degrees of freedom you will need to 
identify the degrees of freedom for your test.  In the case of gender equity in education, because 
we have two expected frequencies (one for the number of men and one for the number of women 
in a class) there is 1 degree of freedom. The probability of getting a χ2 value of 5 when we have 
only 1 degree of freedom is only p=0.025, so the assumption that men and women are equally 
likely to take statistics is probably (97 times in a 100 cases) when there are only 5 men in a class 
of 20.   The remainder of this section explores how χ2 can be used to analyze count data in 
contingency tables.

The way that the χ2 test works is based in the definition of the χ2 distribution as a sum of 
squared z scores.  In otherwords the χ2 distribution is just a particular way of looking at random 
variation. Because the z scores are squared the χ2 distribution is always positive, and because we 
expect a certain amount of randomness to be contributed by each z score that is added to the sum 
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the χ2 probability density distribution peaks at higher χ2 values and becomes flatter as the 
number of z scores increases (see figure 5.1).
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∑   The definition of the χ2 distribution

Notice that the expression for how to calculate χ2 from observed and expected frequencies has 
exactly the same form as the expression of χ2 in terms of z scores. This is why you can use the 
χ2 distribution to measure how different the expected and observed frequencies are.  We let fe 

serve as our best estimate of σ2 and use this to convert the differences between observed and 
expected frequencies into squared z scores for evaluation with χ2.  

In figure 5.1 you can see that the most highly probable value of χ2 (the peak of the probability 
density function) is always just a little below the number of degrees of freedom of the statistic.  
χ2 is different from the ratio statistics we discussed in Chapters 3 and 4.  No matter what the 
degrees of freedom were, we expected the t and F statistics to be approximately equal to 1 if the 
null hypothesis is true and substantially larger than 1 if the null hypothesis is false.  With χ2 on 
the other hand, we expect the statistic to be almost equal to the degrees of freedom if the null 
hypothesis is true and substantially larger than the degrees of freedom if the null hypothesis 
should be rejected.  This is because the expected value of z2, on average over all yi, is 1, and χ2 is 
a sum of squared z scores (this is because the average deviation from the mean in any data set is 
by definition a “standard” deviation).
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Figure 5.1.  The χ2 distribution at four different degrees of freedom. The peak of 
the probability density function is at a higher value for versions of the χ2 
distribution with higher degrees of freedom (e.g. the peak of the df=15 
distribution is near χ2=13 while the peak of the df=10 distribution is near χ2=8)

5.1.2 Frequency in a contingency table.

A contingency table is the count of events classified two ways - on two variables.  For example, 
we might count the number of times that coda /l/ is “vocalized” in the speech of people of 
different ages. (Robin Dodsworth did this in Worthington, OH and has kindly shared her data for 
this example. The pronunciation difference under examination here is between /l/ produced with 
the tongue-tip against the alveolar ridge - usually also with the tongue body raised, a “dark” /l/ - 
versus a realization in which the tongue tip is not touching the roof of the mouth so that the /l/ 
sound would be transcribed as [w], or even a vowel off-glide like [].) The contingency table (see 
Table 5.1) has columns for each age level, and rows for the two realizations of /l/.  If the rate of /l/ 
vocalization does not differ for people of different ages then we expect the proportion of /l/ 
vocalization to be the same for each age group.  That is, our expectation for each age group is 
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guided by the overall frequency of /l/ vocalization disregarding age.

Table 5.1.  A two way contingency table of the frequency of /l/ vocalization as a 
function of talker age.  The expected table shows the expected values, which were 
calculated from the marginal proportions, assuming that age groups did not differ 
from each other.

313
218

5319862170 total 201

0.180.120.320.38

prop.

0.59
0.41

531
313
218
total

9862201 170 total

22.18  

€ 

χ2

0.243.045.180.61vocalized

0.354.377.440.87unvocalized((o-e)^2)/e

0.595837100118vocalized
0.4140257083unvocalizedExpected

10.180.120.320.38proportion

5426123110vocalized
44364791unvocalizedObserved

fiftiesfourtiestwentiesteens

This way of deriving expectations in a contingency table is exactly analogous to the way that I 
derived expected frequencies for the gender composition of statistics classes, however the 
expected values are taken from the overall observed proportion of vocalized and unvocalized 
utterances in the study rather than from population demographics (50% men).

So, in table 5.1, the expected frequency of unvocalized /l/ for teens is 83 and this expectation 
comes from taking the total number of observations of /l/ produced by teens multiplied by the 
overall proportion of unvocalized /l/ (0.41*201 = 83).  If you want you can get the same expected 
number of unvocalized /l/ for teens by taking the total number of unvocalized /l/ and multiply that 
by the proportion of observations coming from teens (0.38 * 218 = 83).  The expected number is 
calculated on the assumption that teens are just as likely to produce unvocalized /l/ as any of the 
other age groups.  If, for example there was a tendency for teens to produce vocalized /l/ almost 
all of the time, then the expected value that we derive by assuming that teens are no different 
would be wrong.  χ2 tests the independence assumption inherent in these expected values by 
summing up how wrong the expected values are.  As table 5.1 shows, our expected values are 
pretty close to the observed values for teens and fifties,but people in their twenties and fourties 
differed quite a lot from the expected frequencies (twenties showing less vocalization than 
expected and fourties showing more).  These deviations from the expected counts are enough to 
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cause the overall x2 to total to 22.1 which with 3 degrees of freedom is large enough to reject the 
null hypothesis that age doesn’t matter for predicting /l/ vocalization.  The degrees of freedom for 
this test is (number of age levels - 1) times (number of /l/ vocalization types -1), which works out 
in this case to (4-1)*(2-1) = 3.

-----------------------
R note.  I recoded Dodsworth’s data a bit for this example.  She had coded age with 1 for teens, 2 
for twenties, and so on.  To produce the contingency table, this would have to be converted into 
a factor anyway, so in the factor statement I added new easy to read labels for the age groups.  I 
did the same thing for Dodsworth’s “/l/ vocalization” factor.  She scored productions as 1 for 
“unvocalized”, 3 for “vocalized” and 2 for “intermediate”.  There were only 11 productions 
scored as “intermediate” (out of 542 total observations) so I decided to exclude them from the 
dataset.

> rd <- read.delim("Robins_data.txt") 
> rd$newage <- factor(rd$age,levels=c(1,2,4,5),

labels=c("teens","twenties","fourties","fifties")) 
> rd$lvoc <- factor(rd$l,levels=c(1,3),

labels=c("unvocalized","vocalized"),exclude=c(2)) 

    talker age l   gender conscious   newage        lvoc 
1      bh    5 3 female     connect  fifties   vocalized 
2      bh    5 1 female     connect  fifties unvocalized 
3      bh    5 3 female     connect  fifties   vocalized 
4      bh    5 3 female     connect  fifties   vocalized 
5      bh    5 3 female     connect  fifties   vocalized 
6      bh    5 3 female     connect  fifties   vocalized 
7      bh    5 1 female     connect  fifties unvocalized 
8      bh    5 1 female     connect  fifties unvocalized 
9      bh    5 3 female     connect  fifties   vocalized 
10     bh    5 2 female     connect  fifties        <NA> 
11     bh    5 1 female     connect  fifties unvocalized
...

The frequency table that has counts for /l/ vocalization as a function of age is produced by 
table(), and the χ2 test of the independence of lvoc and newage is given by 
summary(table()).

> attach(rd)
> table(lvoc,newage)
           teens twenties fourties fifties
unvocalized  91    47       36       44
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vocalized   110   123       26       54     

> summary(table(lvoc,newage)) 
Number of cases in table: 531  
Number of factors: 2  
Test for independence of all factors: 
Chisq = 22.118, df = 3, p-value = 6.166e-05
------------------

5.2 Working with probabilities - the binomial distribution.

It is often the case in analyzing the frequency of occurrence of a linguistic variable that we are 
dealing with binomial probabilities.  That means that we classify each production as to whether a 
process applied or not - so we could code the data as 1 (process applied), 0 (process did not 
apply).  There are number of ways of treating binomial probabilities in quantitative analysis.  By 
way of introduction I will take an example from electoral politics, and then we will see how the 
techniques and concepts from this example extend to an analytic technique with regression 
analysis.

A warning:  In this section and the one to follow on logistic regression I will follow the standard 
practice in statistics and will use the symbol p to refer to the “population” probability which we 
are trying to estimate from a sample probability π.  This is directly analogous to the use of Greek 
and Roman letter variables for variance (σ and s), however, most of us think of π as a geometric 
term for the number of radians in a circle - 3.14....  Try to suppress this association and think of 
π from now on (in this book) as a probability.

5.2.1 Bush or Kerry?

As I write this in the closely contested state of Ohio, it is 2 days before election day 2004.  So it 
is natural to use poll results as an example of how to test hypotheses about binomial data.  
Responses to a poll can be considered a “success” for Kerry when the respondent says he/she 
plans to vote for Kerry and a “failure” for Kerry for any other response.  For instance, 
Cleveland, Ohio’s largest newspaper, the Plain Dealer, asked 1500 likely voters in Ohio who 
they plan to vote for and found that 720 said “Bush”, 675 said “Kerry” and the rest were either 
undecided or had determined to vote for other candidates.  These poll results can be given in a 
contingency table (see table 5.2).

Table 5.2.  Opinion poll results as “success” or “failure” of a particular candidate.  
The count of success and failure (in a sample of 1500 voters) is shown in the left 
table.  In the center table these are converted to observed probabilities, and the 
right table shows the model parameters which these probabilities estimate.
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0.520.48

0.550.45

failuresuccess

(1-πb)πb780720Bush

(1-πk)πk825675Kerry

failuresuccessfailuresuccess

The expected value of the probability of a “Kerry” response in the survey sample is πk - the 
proportion in the sample who say they will vote for Kerry.  The standard error of this estimate 
is given by, 

    

€ 

σ( p) =
π (1− π )

N
expected value of the standard error of the parameter π.

It may seem a little mysterious that you can calculate the standard error of a probability from the 
probability itself (if you want to see a derivation of this result see Hays, 1973).  Figure 5.2 
illustrates the standard error of a binomial variable for different sample sizes and proportions (p). 
You can imagine that if everybody said they would vote for Kerry (p=1.0) then there would be 
no variation at all in the data set.  Similarly if everyone planned to not vote for Kerry (p=0.0) the 
standard error of the estimate would also be zero, and the situation where we have the greatest 
amount of variation is when the population is evenly split (p=0.5).  This is what we see in figure 
5.2.  The figure also shows that larger samples have smaller standard error of the statistical 
estimate of π.
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Figure 5.2.  The standard error of p, for a samples of size 50, 200, 500, and 1000.  
Standard error of a probability decreases near 0 and 1, and is also smaller as 
sample size increases.

So, with a way of estimating the standard error of a proportion we can then test a hypothesis 
about the Plain Dealer poll.  The hypothesis is that Bush and Kerry are tied in Ohio.  That is:  
H0: πk =  πb.  We’ll test this null hypothesis by calculating a z score from the difference between 
the two probabilities.
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z =
pb − pk

s( pb − pk )

The standard error used in this statistic is related to the method used to calculate standard error 
for a single probability.
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s( pb − pk ) =
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+
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Entering 0.48 for pb, 0.45 for pk, and 720 for nb and 675 for nk we get a standard error of 0.027 
(this is the “plus or minus 2.7%” that is reported with poll results), and this gives a z score of 
1.123.  This is not a very large z score, in fact if we took 100 polls 13 of them would have a larger 
z score even though Bush and Kerry are actually tied in Ohio.  That is, this statistical test [z = 
1.123, p=0.13] does not lead me to reject the null hypothesis that πk =  πb.

I conducted the same analysis for a number of different polls, and pooled results of them, from 
Ohio, Florida, and Pennsylvania.  These results are shown in table 5.3.  The z score for the sum 
of polls in Ohio is clearly not significant (p=0.39) indicating that the poll results can’t predict the 
winner in this state. The Florida sum of polls result shows Bush leading Kerry 48% to 47% and 
this difference is not significant (p=0.088).  The difference between Bush and Kerry in the 
Pennsylvania sum of polls is marginally reliable (p<0.03).  

What we saw on election night was an indication of the strengths and limitations of statistical 
inference.  In all three states the candidate who was leading in the sum of polls ended up winning 
the state, though in two cases - Ohio and Florida - we couldn’t have confidently predicted the 
outcome.  However, we see the odd result that in Ohio more of the undecided or non-responsive 
people in the polls seem to have voted for Bush than for Kerry (about 65% vs. 35%).  This 
discrepancy was even more pronounced in Florida (about 80% vs. 20%).  The situation in 
Pennsylvania is more like we would expect given the nearly even split in the poll results - about 
53% of the undecided or non-responsive voters ended up counting for Bush and 47% for Kerry.  
The discrepancy between the poll results and the election results indicates that there was either a 
bias toward Kerry in how the polls were taken, or a bias toward Bush in how the election was 
conducted. 

Table 5.3 Poll results and signficance tests for three “battleground” states in the 
2004 US presidential election.
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H0: Bush=KerryProportionsCounts

-1.900.0120.490.467337732166880Sum of 9 polls

0.510.492004 results

Pennsy l v an i a

1.350.0130.470.48295830686332Sum of 10 polls

0.470.522004 results

F l o r i d a

0.280.0140.4710.475248725085279Sum of 7 polls

0.490.512004 results

Oh io

zerrorKerryBushKerryBushTotal

---------------------
R note.  Instead of looking up the probability of z scores like those in table 5.3, you can use the 
pnorm() function in R.

> pnorm(0.28,lower.tail=F) # ohio pooled polls
[1] 0.3897388
> pnorm(1.35,lower.tail=F) # florida pooled polls
[1] 0.088508
> pnorm(-1.9) # pennsylvania pooled polls
[1] 0.02871656
--------------------------

One thing that I learned from this is why pollsters use samples of 600 people.  If you look at the 
standard error values for the different polls, it is apparent that the polls with larger samples have 
lower standard error, but not substantially so.  For instance, to go from standard error of 4.2% to 
1.2% the sample size had to increase from 600 to 6000.  Probably, in most instances the extra 
effort and expense needed to interview 10 times as many people is not worth the extra accuracy.  

The trade off between accuracy [s(pa-pb)] and sample size in a two alternative poll is shown in 
figure 5.3. As you can see in the figure, the pollster’s preferred sample size, 600 is just below the 
inflection point in this curve where increased sample size begins to result in sharply diminishing 
improved accuracy.  I thought that that was an interesting thing to learn about binomial 
distributions and error in estimating a population proportion from a sample proportion.
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Figure 5.3. Standard error as a function of sample size for a two alternative poll 
with πa = πb = 0.5.

5.3 An aside about Maximum Likelihood Estimation.

Maximum likelihood (ML) estimation of model parameters is a key building block of the main 
statistical analysis technique used in modeling sociolinguistic data - logistic regression.  So before 
we dive into logistic regression we’ll briefly touch on ML estimation.  

It is perhaps intuitive to understand that the best possible estimate of a population parameter π  
- the probability of an event - is the observed probability that is found in the data. Indeed, the 
expected value of p (the observed probability) is π (the population probability).  However, when 
you deal with multifactor models using logistic regression, direct estimation of model parameters 
from data is more complicated.  

We saw in chapter 4 that model parameters in analysis of variance and linear regression are 
estimated using the least squares (LS) criterion.  The best model parameter is the one that 
produces the smallest sum of squared deviations from the observed data.  This approach is very 
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powerful because exact solutions are possible.  For instance, the mean is the least squares 
estimate of central tendency and there is only one way to calculate the mean, with no guess work.  
You calculate it and there you have it - the best fitting (least squares) estimate of central 
tendency.

The main limitations of LS estimates are that we must have homogeneous variance across 
conditions (remember the equal variance test for t-test, section 3.1.2?) and it must be reasonable 
to assume that the data fall in a normal distribution.  Neither of these assumptions is true of 
count data.  We usually have different numbers of observations in each cell of a table and maybe 
even some empty cells, so the variance is not homogeneous.  Additionally, dichotomous, 
“success/failure” responses do not fall on a normal distribution.

Maximum likelihood to the rescue.  The idea with maximum likelihood estimation is that we 
determine a likelihood function for the parameter values being estimated and then find the peak in 
the likelihood function.  For example, the likelihood function for estimating π from a binomial 
probability distribution with y successes and N total observations is:
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is equal to 1*2*...*N.  You can use this binomial probability function in a number of ways, for 
example to rate the probability of finding 20 heads out of 30 tosses of a true (π = 0.5) coin (2.8% 
of samples).  

------------------
R note.  The binomial distribution is handled by a family of functions in R, just as the normal 
distribution, the t distribution, F, χ2 and others.  For example, to examine the coin toss example I 
used dbinom() to calcuate the probability of throwing 20 heads in 30 tosses of a fair coin.  You 
can also calculate this directly utilizing the choose() function in the binomial probability 
formula.

> dbinom(20,30,.5) 
[1] 0.0279816

> choose(30,20) * .5^20 * (1-.5)^(30-20) 
[1] 0.0279816
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Yet another way to get the same answer is to subtract the probability of getting 19 or fewer 
heads from the probability of getting 20 or fewer heads using the pbinom() function.

> pbinom(20,30,0.5)-pbinom(19,30,0.5)
[1] 0.0279816
----------------------------

In maximum likelihood estimation we know the values of our sample observations (the N and y) 
and we would like to find the most likely value of π - the one that produces the maximum value 
of λ.  But, there is no direct way to calculate the maximum of the likelihood function, so instead 
the peak must be found using an iterative search.  This is illustrated in figure 5.4, where the 
likelihood function (from the binomial probability density function, above) is shown for a sample 
that has 5 successes in 50 trials.  The horizontal axis shows different values of π while the 
vertical axis shows the resulting likelihood values λ.  The aim of maximum likelihood estimation 
is to find the value of π that has the highest likelihood.  The vertical line drawn at π = 0.1 is the 
peak of this likelihood function, the point that is chosen as the best estimate of the population 
parameter π.  In this case, it is simply the probability of a success (5/50 = 0.1) in the sample.  As 
we will see in the next section, this method can also be applied to find the model parameters of 
complicated regression models (of course I haven’t actually said anything about the gradient 
ascent peak finding methods used in the search for the maximum likelihood, and I won’t either). 

A final note about maximum likelihood estimation.  This method of finding the parameters of a 
model is not limited to logistic regression.  You can also use ML estimation to find the 
coefficients of a regression equation or the effects of an analysis of variance.  The only change is 
that the method of fitting the statistical model to the data is the maximum likelihood strategy 
rather than the least squares method.  This parallelism is reflected in the R statistical language.  
The lm() function fits models using least squares estimation, while glm() uses maximum 
likelihood.
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Figure 5.4. The likelihood function used to estimate π, for a sample of 50 trials in 
which 5 were “successes”.  The vertical axis is the likelihood of π [λ(π)], and the 
horizontal axis represents different values of ϕ that could be considered in the 
search for the π with the maximum λ(π).  The maximum likelihood estimate is 0.1 
= 5/50.

-----------------------
R note. Figure 5.4 is produced by this R command.  Note that you could use factorial() in 
this plot statement to spell out the choose function, however the factorial function is undefined 
in R beyond 170! which is a huge number (7.257416e+306).

curve(choose(50,5)*x^5*(1-x)^(50-5),0,0.4,ylab="likelihood", 
xlab="p i",main="Likelihood function for y=5, N=50")

-------------------------
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5.4 Logistic regression.

Maximum likelihood is well-suited to the type of data we usually have in sociolinguistics because 
it is a method that is nonparametric - it doesn’t require equal variance in the cells of a model, and 
doesn’t require that the data be normally distributed.  

One other aspect of sociolinguistic data was emphasized in sections 5.1 and 5.2.  The data are 
usually counts of “applications” of some process, so we are dealing with probabilities. You might 
recall from chapter 1 that we used an “s” shaped tranformation - the arcsine transform - to deal 
with the reduced variance of probabilities near 0 and 1.  In logistic regression we use the logit 
function for the same purpose (see Cedergren & Sankoff, 1974; Sankoff, 1978, 1988 on the use of 
logistic regression in sociolinguistics).  The logit function is preferable to arcsine because the 
resulting value has a sensible interpretation as the log value of the odds of application of the 
process.  

€ 

π(x) the proportion of “applications”

€ 

π (x)
1−π(x) the odds of an application

€ 

log π (x)
1− π(x)
 

 
 

 

 
 the log odds of an application, the logit

The relationship between probability, odds and logit is shown in table 5.4.  There we see that an 
event that occurs in 80% of the observed cases has an odds ratio of 4 to 1 (the event is 4 times 
more likely to occur than the non-event.  The logit value of 1.386 is not intuitively meaningful if 
you don’t normally deal in log odds (who does?) but it is easy to map logits into odds or 
probabilities, and the values are centered symmetrically around zero.

Table 5.4. Comparison of probability, odds and log odds for a range of probabilities. 
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2.1979.000.9

1.3864.000.8

0.8472.330.7

0.4051.50.6

0.001.000.5

-0.4050.6670.4

-0.8470.4280.3

-1.3860.250.2

-2.1970.1110.1

log oddsoddsprobability

The logit function is shown in figure 5.5 as a function of probability.  In interpreting the results 
of a logistic regression some analysts (particularly in medical research) refer directly to the odds 
or the log odds of of an event, such as recovery from a disease.  I find it more understandable to 
translate the coefficients that are found in logistic regression back into probabilities via the 
inverse logit function.

    

€ 

y = log
π ( x)

1− π (x )

 

 
 

 

 
 the logit, or logistic, function

    

€ 

π (x ) =
e y

1+ e y the inverse logit (to calculate probabilities from logits)
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Figure 5.5.  The logit transform y = log(p/(1-p).  The inverse of this is p = 
exp(y)/(1+exp(y)).

5.5 An example from the []treets of Columbus.

Now, let’s turn to an example of a logistic regression analyis of some sociolinguistic data.  These 
data are found in the file “DDRASSTR.txt” and were contributed by David Durian.  Durian 
describes his study this way:

Data from 120 Caucasian, native-English speaking Columbus, OH store clerks (40 
store clerks working in a variety of stores at each of 3 Columbus malls [Easton, 
Polaris, and City Center]) were elicited via the Rapid Anonymous Survey 
technique. The entire set of store clerks were also stratified by the following social 
factors: age (15-30, 35-50, 55-70, 40 speakers in each age group); social class 
(working class- WC, lower middle class - LMC, and upper middle class - UMC, 
40 speakers of each class); and gender (60 males/60 females).
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From each of the 120 speakers, two tokens of words containing word-initial “str” 
clusters were obtained. The first, in a less emphatic speech environment; the 
second in a more emphatic one. This leads to a total of 240 tokens (120 more 
emphatic; 120 less emphatic). The two variant realizations of “str” were rated 
impressionistically by the researcher as closer to [str] or [tr].

All of the data were elicited by the researcher asking for directions to a known 
street in the area of the mall that was misidentified as a "road." The speaker then 
corrected the researcher by saying "you mean X street," and the first “str” token 
was obtained. Following this first utterance, the researcher said, "excuse me, what 
did you say" and the speaker would more emphatically repeat the phase "x street" 
producing the second “str” token. In the case of Polaris Mall no widely identified 
street is located within proximity to the mall (everything there is a Road, 
Parkway, Place, etc), and so the researcher asked for directions to a part of the 
store that would yield the word "straight" in place of "street."

Data were written down on a sheet of paper just after leaving eyesight of the 
informant. No audio recordings were made. The only judgment made on the 
sounds were the researher’s own impressionistic rating.

I edited Durian’s description to simplify the description of how he assigned talkers to different 
class levels.  After collecting the data from a number of different stores, in the initial design with 
40 talkers from each of three presumed classes, he had students at Ohio State University estimate 
the average class background of the shoppers in the stores. These judgements were used to 
estimate the clerks’ class for the logistic analysis.

5.5.1  On the relationship between χ2 and G2

Logistic regression results in a statistic called G2 which is the log likelihood analog of χ2.  So, in 
this section we’ll demonstrate the similarity between χ2 and G2 and talk about where this G2 
statistic comes from.

Table 5.5 shows the number of [tr] and [str] productions in Durian’s study as a function of 
whether the utterance was produced without emphasis or in a relatively more emphatic utterance.  
It looks as if people were much more likely to say [tr] in the less emphatic case (35% versus 
12%).  The value of  χ2 for this table, found using the R statement  
summary(table(str,emphatic)) is 19.35, which is signficantly greater than chance for a 
χ2 with one degree of freedom.

Table 5.5.  Number [tr] and [str] productions as a function of emphasis. 
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emphasis

10677str

1443tr

moreless

Now the logistic regression analysis of these same data is done using the general linear model - 
glm() - which fits model parameters using maximum likelihood estimation instead of least 
squares. Results of the glm model fit can be printed as an analysis of deviance table which is 
analogous to the analysis of variance table.  This analysis of deviance table for the [tr] by 
emphasis data is shown in table 5.6. The G2 value (labeled “Deviance”) is 20.08 - almost the 
same as the χ2 value.

Table 5.6.  Analysis of Deviance Table for a logistic regression 
analysis of the data shown in table 5.5.

7.416e-06243.0423820.081emphatic
263.13239NULL

P(>|Chi|)Resid. DevResid. DfDevianceDf

Although, in the paragraphs to follow we will discuss how G2 is derived from likelihood ratios in 
model fitting, it may be interesting to some readers to note that like χ2, G2 can be calculated 
directly from the observed and expected frequencies of a contengency table. Using the same 
counts of observed and expected frequency that are used in calculating χ2,

    

€ 

χ 2 =
(oi − ei )

2

eii
∑ ,

G2 is calculated from the natural log of the ratio of observed and expected frequency.  One of the 
exercises at the end of the chapter has you derive 19.35 as the χ2 and 20.08 as the G2 of the data 
in table 5.5.

    

€ 

G2 = −2 oi log oi
ei

 

 
 

 

 
 

i
∑

-----------
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R note.  The command that produced the analysis of deviance table shown in figure 5.6 was:
> dd<-read.delim("DDRASSTR.txt")
> attach(dd)
> anova(glm(str~emphatic,family=binomial,data=dd),test="Chisq")

Parts of this command are familiar from previous chapters.  For example, we specify a model 
str~emphatic such that the response variable, whether the person said [str] or [tr], is a 
function of whether the utterance was emphatic or not.  This model is evaluated by the glm() 
function much as we used the lm() function to produce analysis of variance tables in chapter 4.  
Because the response measure is binomial rather than a measurement on a continuous scale, we 
specify that the model should be evaluated with family=binomial.  This results in the use of 
the logistic scores.  Finally, anova() requests that the results be printed as an analysis of 
deviance table and test=”Chisq” specifies that the deviance score should be evaluated on the 
χ2 distribution.
------------

In logistic regression, since we are using maximum likelihood parameter estimation to find the 
best fitting model of the data, the measure that is used to test the degree of fit of a model is the 
likelihood ratio.  The idea here is to compare the maximum likelihood found in a model that 
includes a possible explanatory factor (like emphasis) with the maximum likelihood of a model 
that does not include that explanatory factor.  In the NULL model, which includes no 
explanatory factors at all, the only basis for making a prediction is the average probability of [tr] 
productions. This serves as a baseline and then we add a possible explanatory factor and measure 
how much the likelihood of the model improves.

To compare models with and without a factor we take the likelihood ratio.  The idea here is 
analogous to the use of ratio measures in all of the other statistical hypothesis tests that we’ve 
discussed so far (t test, F test, z score).  If the ratio is close to unity (1) then the improved fit 
offered by the added factor is insubstantial and considered a nonsignificant predictor of the 
criterion variable.  

Likelihood ratios fall on a different distribution than variance ratios, so we use a different statistic 
called G2 to test their significance. G2 has the same distribution as χ2, so in looking up 
significance of G2 you use the χ2 tables, but because it is calculated a different way we give it a 
different name.  G2 is called Deviance in table 5.6 and can be calculated from the sum of deviance 
scores (

€ 

yi − ˆ y i ) when the data are normally distributed an the true σ is known.

€ 

G2 =−2log lm
lm−1

 

 
 

 

 
 comparing the likelihoods of two models.

Quantitative Methods in Linguistics Keith Johnson

163



The likelihood ratio in this formula compares two models, m and m-1, where m has one additional 
predictive factor that was not included in m-1.  This value in table 5.6 was 20.08. In practice it is 
convenient to calculate G2 from two other G2 (deviance) scores.  The highest possible likelihood 
value can be obtained when there is a parameter for every observation in the data set. This one-
paremeter-per-data-value model is called the saturated model.  Any other model can be compared 
to the saturated model with a G2 value to measure the improvement in fit.  This gives a “residual 
Deviance” that indicates how much better the saturated model predicts the data compared to a 
smaller (perhaps more explanatory) model.

€ 

G 2(m) = −2log lm
ls

 

 
 

 

 
 =−2 log(lm)− log(ls)[ ] = −2 Lm − Ls[ ] Deviance of model m.

Note that in this statement we take advantage of the fact that the log of a ratio is equal to the 
difference of the log values.  So to calculate the log of the ratio we can take the difference of the 
log likelihoods.  Now to calculate G2 comparing model m and model m-1 we can simply take the 
difference between deviance scores.

€ 

G2(m |m −1) = −2 Lm − Lm−1[ ] =−2 Lm − Ls[ ] −−2 Lm−1 −Ls[ ]

= G2(m) −G2(m −1)

This is distributed on the χ2 distribution with degrees of freedom equal to the difference between 
the residual degrees of freedom for the two models (the number of coefficients added to the model 
in going from m-1 to m.

This has been a fairly long explanation of the central observation of this section.  The G2 that we 
get in logistic regression analysis of deviance is simply a different way to measure the same thing 
that we measured with χ2.  In the case of our example from the []treets of Columbus, Ohio the 
question is: “does emphasis play a role in the production of [str]”?  With a Pearson’s χ2 analysis 
of the tabulated data we found a significant χ2 value of 19.35 (with one degree of freedom).  With 
logistic regression we found a significant G2 value of 20.08 (again with one degree of freedom). 
This is supposed to illustrate that these two analyses are two ways of testing the same 
hypothesis.  

Logistic regression has several advantages some of which we will explore in the remaining 
sections of this chapter. 

5.5.2 More than one predictor.
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One of the main advantages of logistic regression over Pearson’s χ2 is that we can fit complicated 
models to the data using logistic regression.  As an example of this we will consider a set of four 
predictor variables and their interactions in the Durian [tr] data.  Recall that in addition to 
recording productions in emphatic and non-emphatic context, he collected data from an equal 
number of men and women, from people in three different age ranges, and classified his talkers 
according to the economic/social class of their customers.  With logistic regression, as with 
analysis of variance, we can test all of these factors at once.

I want to emphasize that this analysis is possible, not only because logistic regression is a great 
analysis tool, but also because Durian collected enough data to provide a relatively balanced 
model with about 10 observations in each cell of the model.  This involved collecting data from 
120 people.  Less than this and he would have had to give up an experimental variable, like age or 
class, for lack of statistical power to examine the interactions among the factors.  It is often 
necessary in sociolinguistics to study many fewer people because ethnographically careful data 
collection requires a substantial investment of the investigator’s time for each subject in a 
research study.  The trade off that we have to keep in mind in these cases is that there may not 
be enough data to permit investigation of more than one or two research variables, and 
particularly not the interaction of variables. This is too bad because interactions are often much 
more informative than main effects.

The interaction that we will be exploring in the [tr] data is between age and gender.  The 
conclusion that young women are much more likely to use [tr] than either young men or older 
women, i.e. that young women are leading a sound change in Columbus, Ohio.  We’ll look at two 
strategies for approaching this analysis.

The first analysis is exactly like the one shown above in table 5.6, except here we specified a full 
model which includes fifteen predictive factors - four main effects (age, gender, emphasis, and 
class) plus all of the possible interactions of these effects. As the bold print in table 5.7 indicates, 
all four of the main effects were found to have a significant effect on the frequency of [tr] 
production, while only one interaction seems to matter. That interaction is between age and 
gender.

Table 5.7.  Analysis of Deviance table for a full model of the [tr] data. 
Statistically reliable main effects and interactions are printed in bold face.
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Terms added sequentially (first to last)

1.000156.5412040.00144-way age:gender:emphatic:class
1.000156.5422080.0012gender:emphatic:class
0.504156.5432103.3334age:emphatic:class
0.253159.8762145.3564age:gender:class
0.084165.2312184.96023-way age:gender:emphatic
0.466170.1912201.5282emphatic:class
0.170171.7192223.5422gender:class
0.226175.2622241.4631gender:emphatic
0.105176.7252257.6564age:class
0.927184.3812290.1512age:emphatic
0.017184.5322318.18722-way age:gender

2.165e-05192.71923321.4812class
2.062e-06214.20023522.5371emphatic

0.003236.7372369.0191gender
1.690e-04245.75623717.3712Main effects age

263.127239NULL
P(>|Chi|)Resid. Dev Resid. DfDevianceDf

Response: str
Model: binomial, link: logit

Notice in table 5.7 the statement at the top that the terms were added sequentially.  What this 
means is that unlike analysis of variance, in logistic regression the order in which the factors are 
mentioned in our model statement (when invoking glm()) has an impact on the statistical test of 
the factors.  In particular, if two predictive factors T1 and T2 are highly correlated with each 
other, if we enter T1 first then T2 will probably not show up as significant, because to test the 
effect of T2 the regression tests whether adding T2 to a model that already includes T1 is an 
improvement over the model with T1. When T2 is correlated with T1 then it provides very little 
improvement over a model that includes T1, and the nature of the model fitting procedure never 
tests T2 alone without T1 already in the model.  The situation is reversed if T2 is mentioned first 
in the list of predictor variables.  

Notice that interactions are always added into the analysis after the main effects or smaller 
interactions (in both the full model and in the step-wise procedure below). This is entirely 
appropriate because we want to test if there is any variance to account for by the interaction 
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after removing variance due to the higher-level effects.

But to determine whether it would be better to use T1 or T2 to predict our data we might want 
to use a step-wise procedure that will test them independently in order to determine their best 
order in the model statement.  We saw stepwise regression procedures earlier in chapter 3 and 
here will use the step() function with logistic regression just as with did with linear regression.

As Table 5.8 shows, the stepwise procedure selected the main effects in a different order than I 
had entered them for the full model analysis in table 5.7, but the results are unchanged - all four 
main effects, as well as the age by gender interaction, are selected as significant.  

Table 5.8.  Analysis of Deviance table for the step-wise analysis of the [tr] data.

            Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL                          239    263.127          
emphatic     1   20.083       238    243.044 7.416e-06
class        2   23.583       236    219.462 7.570e-06
age          2   16.153       234    203.308 3.107e-04
gender       1   10.589       233    192.719     0.001
age:gender   2    8.187       231    184.532     0.017

We’ve seen the effect of emphasis - namely that the rate of [tr] is 35% in less emphatic context 
and drops to 12% in more careful speech. Class had a similarly dramatic influence on [tr] rates 
with 37% for working class, 27% for lower middle class and only 8% for upper working class 
averaged across levels of all other factors.  By the way, averaging across all other factors is 
justified by the lack of any interactions with other factors in the logistic regression. Younger 
speakers had a greater proportion of [tr] than did older speakers (34% versus 9%). Similarly, 
women were more likely to use [tr] than were men (32% versus 16%).  However, the age by 
gender interaction indicates that it is misleading to average over gender when we evaluate the age 
effect, or to average over age when we evaluate the gender effect.  Figure 5.6, which shows the age 
by gender interaction, illustrates why this is so.  Men had a relatively constant rate of [tr] 
production regardless of age, while the young and middle age women had much higher rates of 
[tr] than did the older women.  Thus, the age effect is confined primarily to women and the 
gender effect is confined primarily to the young and mid aged speakers.
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Figure 5.6. The age by gender interaction in Durian’s [tr] study.  Data for male 
talkers is shaded gray, while the bars showing data for female talkers are white.

-----------------
R note.  The first analysis was called the “full” analysis, because I included all four factors and 
all of their their interactions. The order in which the factors are listed in the model statement - 
here with age first and class last - matters in the statistical test.

anova(glm(str~age*gender*emphatic*class, family=binomial, data=dd), test = 
"Chisq")

The stepwise logistic regression was performed with this statement:

dd.glm <- step(glm(str~1, family=binomial, data=dd), str ~ ag e * gender * 
class * emphatic)

Table 5.9 can then be produded by anova(dd.glm,test="Chisq").  The stepwise procedure 
gives you a blow-by-blow print out as it builds up the model from the NULL model to the model 
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that contains only those factors that are determined to be statistically reliable.

Figure 5.6 was produced with the barplot() command, which requires that the input be a 
matrix.  I constructed the matrix from a vector of the proportion [tr] responses.

v <- c(7,7,5,20,16,2)/40
m <- matrix(v,nrow=2,byrow=T)
barplot(m,beside=T,names.arg=c("young","mid","old"), 
legend=c("male","female"),col=c("gray","white"), ylab="Proportion 'shtreet'")
---------------

5.6  Logistic regression as regression: An ordinal effect - age.

Just briefly here it makes sense to consider how an ordinal effect can be treated in a regression 
model - this applies both to the least squares models that we discussed in previous chapters and 
to the maximum likelihood models that we are considering in this chapter.  For instance, in 
Dodsworth’s /l/ vocalization data set (section 5.1) we have a factor “age” that takes one of four 
levels - teens, twenties, fourties, or fifties.  The levels of this factor are obviously ordered from 
youngest to oldest, so it would make sense to treat age as an ordinal variable.  This is done by 
using “polynomial” coding to convert the levels of the age factor into a numeric code.  The three 
variables used to encode ordered trends as age relates to /l/ vocalization.   For example, if /l/ 
vocalization occurs more frequently in the speech of older talkers than in younger talkers, we 
would expect the linear encoding of age to be significant, meaning that as age increases /l/ 
vocalization increases just as the linear coefficient values increase linearly from -0.67 to 0.67.  
The encoding scheme for age from table 5.9 is shown also in figure 5.7.

Table 5.9  Polynomical coding of an ordinal factor.  

0.220.50.67fifties
-0.67 -0.50.22fourties
0.67 -0.5-0.22twenties

-0.22 0.5-0.67teens
cubic quadraticlinear

Just as with other coding schemes (treatment coding and effects coding) there are three variables 
in the regression formula for this four-level factor - one variable less than the number of levels.  
However in this case the first variable encodes a linear increase over the four levels, the second 
factor encodes the possibility of a dip or bulge in the middle of the age range, while the third 
factor encodes the more complicated possibility that /l/ vocalization  “zigzags” among the age 
levels.
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Figure 5.7.  The polynomial encoding scheme for the different levels of “age” -  
“teens” (1.0 on the x axis), “twenties” (2.0 on the x axis), etc.  The linear, 
quadratic and cubic encoding schemes are shown.

Now, when we conduct the logistic regression with age as an ordinal factor, the regression 
coefficient (Table 5.10) for the cubic ordered pattern age.C is larger than either the linear or the 
quadratic coefficients, and the cubic coefficient is also reliably different from zero.  This means 
that the pattern of /l/ vocalization as a function of the age of the talker was more like the “zig 
zag” pattern shown by the cubic encoding scheme shown in figure 5.6.  That this is in fact the 
pattern of of /l/ vocalization is shown in the graph of proportion of /l/ vocalization shown in 
Figure 5.8. 

Table 5.10.  Regression coefficients from a logistic regression analysis of /l/ 
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vocalization.  This analysis focussed on the ordinal effect of age.

Coefficients:

5.39e-05***
0.54099

4.038
-0.611

0.21473
0.19810
0.17994 0.12275

0.86705
-0.12110

age.C
age.Q

-1.543  -0.27771  age.L

0.00926**  2.6020.099050.25776(Intercept)
Pr(>|z|)     z valueStd. ErrorEstimate

So, it is possible, by treating an ordinal factor as ordinal to determine whether the relationship 
between that factor and the predicted variable is basically linear, or if there are quadratic, or cubic 
(or higher powers, if more levels are considered).  The overall independence of /l/ vocalization 
from age is tested in exactly the same way whether we treat age as ordinal or as nominal, and the 
success of the regression model does not depend on this - effects coding of age, and ordinal coding 
of age captures exactly the same amount of variation.  However, being able to specify that a 
factor is ordinal lets us determine the type of trend that relates this ordered factor to the response 
variable.  I guess in most situations you would hope for something pretty simple like a linear or 
quadratic trend. This cubic trend requires a special kind of theory to explain it.
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Figure 5.8.  Proportion of /l/ vocalization for each of four different age groups. The 
pattern here is most like the “cubic” ordinal effect.

----------------------
R note.  I mentioned earlier that I recoded Dodsworth’s data a little for this chapter.  To encode 
the fact that age is an ordinal variable I added “ordered = T” to the factor() statement that I 
had earlier used to recode “age” into “newage”.  Additionally, you can use ordered() to indicate 
that an existing factor should be treated as an ordered factor - this using the levels option to list 
the factor levels in order.

rd$newage <- factor(rd$age,levels=c(1,2,4,5), labels= c("teens", "twenties", 
"fourties", "fifties"), ordered = T) 

rd$newage <- ordered(rd$newage, levels = c("teens", "twenties", "fourties", 
"fifties"))
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Table 5.9 is the output from contrasts(rd$newage), and table 5.8 was produced by the 
following command.

> summary(glm(lvoc ~ newage, data=rd, family=binomial))
-----------------------

For example, when we consider whether age influences /l/ vocalization the analysis of deviance 
table from the logistic regression analysis shows that the NULL model has a deviance, or G2, 
value of 719.03. This is G2(m-1).  When we add age as a predictor variable the deviance of this 
new model m is 696.47. This is G2(m).  The difference between these two gives the G2 value 
that we use in testing the hypothesis that age influences /l/ vocalization.  This difference value 
G2(m|m-1) is 22.56, which on the χ2 distribution with 3 degrees of freedom is a large enough 
value that is unlikely to have occured by chance. we conclude that age is an important predictor 
of /l/ vocalization.  One thing to recall is that the χ2 value testing the independence of /l/ 
vocalization and age was also 22.  In other words these are two ways of calculating the same 
thing.

Analysis of Deviance Table  
           Df Deviance Resid. Df Resid. Dev
NULL                      530     719.03 
newage   3    22.56       527     696.47

This illustrates the similarity between G2 and χ2 in the case where a single factor is being tested.  
Now if you think about it a bit you may realize that the order in which you add factors to a 
model will have an impact on the G2 value that you find for each factor in the model.  This is 
because G2 for a particular factor is not being tested against an overall residual error variance but 
against the likelihood of a model that differs only by not having the factor in the model.  

Consider for example a two factor model that has age and conscious as factors for /l/ vocalization.  
When we add age first the deviance is as we found in the one factor model, but when we add age 
second the G2 value drops to 13.68.  This is still significant but highlights the importance of the 
order in which the factors are added to a model.

Analysis of Deviance Table  
              Df Deviance Resid. Df Resid. Dev 
NULL                         530     719.03 
newage      3    22.56       527     696.47 
conscious   3     9.41       524     687.06

Analysis of Deviance Table  
              Df Deviance Resid. Df Resid. Dev 
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NULL                         530     719.03 
conscious   3    18.29       527     700.74 
newage      3    13.68       524     687.06

There are a couple of ways that you could choose to order factors in a model.  Cohen and Cohen 
(1986) recommend adding prior factors first. That would mean putting factors that describe 
unchanging aspects of the situation before adding factors that describe aspects that might change 
from observation to observation.  So factors that describe people come first and factors that 
describe the words they say come last.  However, in this case both age and social consciousness 
describe the people under study.

A second approach is to add factors according to their “importance”, in a stepwise model 
selection procedure. We’ve seen this before in Chapter 3.

5.5 Varbrul/R comparison

Varbrul is an implementation of logistic regression that is used by many sociolinguists (Cedergren 
& Sankoff, 1974; Sankoff, 1978, 1988).  This implementation of logistic regression has been very 
important in the history of sociolinguistics because it conveniently made logistic regression 
available to researchers before the standard statistical packages included logistic regression.  At 
this point Varbrul is a bit of a “legacy” program because most major statistical packages do now 
provide logistic regression.  There are several reasons to use a general purpose software package 
rather than a specialized implementation like Varbrul.  For instance, data handling, graphics, and 
model specification are additionally supplied in the general purpose package, as are other data 
analysis techniques (such as repeated measures logistic regression, which will be discussed in 
chapter 7).  

One hurdle though, in using a general purpose statistics package is that the analytic procedures 
(such as stepwise regression) are quite flexible, presenting a wide range of possible analysis 
strategies.  This can be confusing at times.  Unfortunately I will not be able to explore the range 
of analysis strategies that one might employ using the R glm() function.  We have seen that step() 
implements a stepwise regression strategy that is familiar to Varbrul users. We will also see a 
training/testing strategy in chapter 7, which should be seriously considered for sociolinguistic 
data analysis.

Another hurdle we face with a general purpose software package is that one doesn’t know which 
of the sometimes many values reported in summary and print statements should be used.  In this 
section we will compare a Varbrul analysis of the Durian str/shtr data to a logistic regression in R.  
My aim here is to show the interested reader how to compute the familiar Varbrul results table.

David Durian provides a printout of a Varbrul analysis of his data which is shown here as Table 
5.11.
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Table 5.11.  Results from a Varbrul analysis of the Durian str/shtr data. 

-----------------
R note.  In conducting the analyses described in this section I used a couple of helpful functions 
that are described in more detail in this note.  

We start the R analysis then with the R commands to read in the data and produce a logistic 
regression analysis of these data.

> dd<-read.delim("DDRASSTR.txt")
> dd.glm <- glm(str~emphatic+class,data=dd,family=binomial)

In preliminary analyses I noticed that because of the order of the levels “str” and “shtr” in the 
description of the data, my analyses were treating “str” as a “success” or an “application” of the 
process.  I wanted to have the opposite be true, that “shtr” be the focus of the investigation.  So I 
used relevel() to stipulate that “str” is the default value of response.   

> dd$response <- relevel(dd$response,"str")
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I also found, in presenting the results in this section that it was useful to be able to know how the 
different factor coding schemes work.  For this, the contrasts() is invaluable. The output from 
contrasts() shows the mapping between nominal variables, listed in rows, and the numerical 
codes used in the regression.  For example, the columns below correspond to classUMC and 
classWC in the regression formula.

> contrasts(class)
    UMC WC 
LMC   0  0 
UMC   1  0 
WC    0  1

Similarly, when the coding scheme is contr.sum, contrasts() shows how the three levels of 
“class” will be coded.  The first column shows the coding scheme for the class1 variable in the 
regression formula, and the second column shows the coding for the class2 variable.

> contrasts(class)
     [,1] [,2] 
LMC    1    0 
UMC    0    1 
WC    -1   -1

There are two different ways to specify that you want “sum” coding instead of “treatment” 
coding.  One is to add a list of contrasts to the glm command.  In the list you name the contrast 
coding scheme for each variable.

> dd.glm <- glm(str~emphatic+class, data=dd, family=binomial, 
contrasts=list(emphatic="contr.sum", class="contr.sum")) 

An alternative method is to change the global options used in R.  There are two default contrasts 
specifications in R.  The first indicates how nominal variables will be treated and the second 
indicates how ordinal variables will be treated.  So, using options() we can specify that we want 
all nominal variables to be coded using the “contr.sum” coding scheme.

> options(contrasts = c("contr.sum","contr.poly"))

Finally, to find the inverse of the logit function (to translate from coefficients in the logistic 
model to predicted probabilities) you can use the inv.logit() function.  Naturally enough there 
is also a logit() function to calculate the log odds of a probability.

> library(gtools)   # this library has the inv.logit()  and logit() functions
> inv.logit(0.1889)
[1] 0.54708
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--------------------

Two factors here were compressed into two levels from three.  Here’s how I did that in R.

> summary(dd$age)
   mid   old young
     80    80    80  
> levels(dd$age) <- c("15-55","55-70","15-55")

> summary(dd$Mall)
     CityCenter     Easton    Polaris
          79         80         81  
> levels(dd$Mall) <- c("CityCenter","EastonPolaris","EastonPolaris") 

The logistic regression is then:

> dd.glm <- glm(str~gender+emphatic+age+Mall+bank,family=binomial, data=dd) 

> anova(dd.glm,test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: str

Terms added sequentially (first to last)

          Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL                        239    263.127          
gender     1    8.432       238    254.695     0.004
emphatic   1   20.837       237    233.858 5.001e-06
age        1   19.102       236    214.755 1.239e-05
Mall       1    5.171       235    209.584     0.023
bank       4   38.469       231    171.115 8.965e-08

Recall that Deviance is -2[L] where L is the log likelihood of the current model versus the 
saturated model.  So, the log likelihood of the final model in the list (the one that has all of the 
terms added is:

> 171.115/-2 
[1] -85.5575

This corresponds to the Varbrul overall log likelihood which is reported as -86.8 for this analysis 
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(the R results are close but not exactly identical to the Varbrul output - perhaps a difference in 
the search algorithm being used or in the details of the data?).

From the table of coefficients we can calculate the varbrul weights.

Coefficients:
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.3724     0.3682  -6.443 1.17e-10 *** 
gender1      -0.6937     0.2017  -3.439 0.000585 *** 
emphatic1     1.0044     0.2110   4.760 1.94e-06 *** 
age1          1.0168     0.2656   3.829 0.000129 *** 
Mall1        -0.3778     0.2426  -1.557 0.119370     
bank1         0.7714     0.4397   1.754 0.079353 .   
bank2         0.0633     0.3584   0.177 0.859800     
bank3         0.6262     0.4830   1.296 0.194813     
bank4        -3.0241     0.8539  -3.542 0.000398 ***

Now to calculate the weights we can take the inverse logits of the logistic regression coefficients. 
For example the weights for gender in the Varbrul analysis were 0.33 for men and 0.66 for 
women.  We see from the R analysis that the contrast for gender contrasts(dd$gender)has 
men coded as 1 and women coded as -1.  So, taking the inverse logit of the gender coefficient 
times the gender codes gives the same values that are in the Varbrul output.

inv.logit(-.6937 * 1) = 0.3332105  # for men
inv.logit(-.6937 * -1) = 0.6667895 # for women

Similarly, the Varbrul weights for more and less emphatic productions are given by noting (from 
contrasts(dd$emphatic)) that less emphatic was coded with 1 and more emphatic was coded 
with -1.  The inverse logit of the coefficient gives the Varbrul weights.

inv.logit(1.004 * 1) = 0.7318443 # less emphatic
inv.logit(1.004 * -1) = 0.2681557 # more emphatic

The App/Total column in the Varbrul output is the actual probability of “shtr” in the dataset.  In 
R we compute this from the contingency table.  For example, the proportion of utterances with 
“shtr” in speech produced by men was 19 out of 120 total observations, for a proportion of 
0.158.  This is the value shown in the App/Total for men in the Varbrul printout.

> table(dd$str,dd$gender)
      m   w     
str  101  82   
shtr  19  38 

Finally, the Input & Weight column is the predicted proportion of “shtr” given by the model 
parameters.  In this case we find the same degree of mismatch between predicted and actual that 
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was found in Varbrul.  The predicted proportion of “shtr” productions is the inverse logit of the 
intercept plus the factor coefficient.

inv.logit(-2.3724 - 0.6937) = 0.04452746  # for men
inv.logit(-2.3724 + 0.6937) = 0.1572677 # for women

The logistic regression model is predicting that men will produce “shtr”  4% of the time, when 
actually they say “shtr” in almost 16% of their utterances.

Exercises

1. Calculate χ2 to test the hypothesis that one of your classes has an equal number of men and 
women.

2. In section 5.5.1, I said that the  χ2 for the data in table 5.5 (testing whether emphasis 
influences [Str] production) was 19.35.  Table 5.6 also shows that the G2 value from a logistic 
regression of these data is 20.08. Compute these two numbers using the formulas in section 5.5.1.

3. Using “Robins_data.txt”.  Produce a contingency table of the variables lvoc (which you will 
have to create as in the R-note above), and gender.  Show how to calculate the χ2 to test whether 
/l/ vocalization depends on the gender of the talker - this means that you produce a table like table 
5.1.  Then check your answer with summary(table(lvoc,gender)).

4. Two variables in the DDRASSTR.txt data set code economic class.  One is called “class” and 
has three levels (Working Class, Lower Middle Class, and Upper Middle Class).  The other is 
called “bank” and has five levels (middle and upper working class, and three levels of middle 
class).  Compare logistic regression models that include one or the other of these economic class 
variables evaluating their overall significance and the significance of their interactions with other 
predictor variables.  Also examine the model coefficients that correspond to different levels of 
these factors.  Last, but not least, look at the data!  Examine the actual probability of “shtr” as a 
function of economic class and other variables.  Your goal in all of this activity is to decide which 
of the two methods of encoding economic class seems to be more sensible or valuable in 
analyzing the data (if such a determination can be made).

dd.glm.class <- glm(str~age*gender*class*emphatic, family=binomial, data=dd)
dd.glm.bank <- glm(str~age*gender*bank*emphatic, family=binomial, data=dd)
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