
4 Psycholinguistics

In psycholinguistic experiments, research factors such as word frequency, syntactic 
construction, or linguistic context are manipulated in a set of materials and then participants 
provide responses that can be scored on a continuous scale - such as reaction time, preference, or 
accuracy. The gold standard approach to the quantitative analysis of this type of data 
(continuous response measure, factorial experimental conditions) testing hypotheses about 
experimental factors is the analysis of variance (ANOVA).

Of course psycholinguistics is not the only subdiscipline of lingusitics for which ANOVA is 
relevant.  In fact, the structure of this book around particular subdisciplines of linguistics is a 
little artificial because most of the techniques find application in most of the subdisciplines.  
Nonetheless, multifactor experiments with analysis of variance hypothesis testing is the primary 
methodology in psycholinguistics.  

We are cycling around the two key ideas of chapter 2 that I called “patterns” and “tests”.  In that 
chapter I introduced hypothesis testing and correlation. That was orbit number one.  In chapter 3 
we went further into the t test, emphasizing that the t test is a comparison (a ratio) of two 
estimates of variability, and we spent some time discussing how to find the right estimates of 
variation for use in the t ratio.  Then we dipped into the correlation matrix to see how to find data 
patterns using regression and principal components analysis.  That was orbit number two.  In 
this chapter we are going to stay with hypothesis testing all the way - keeping our focus on 
analysis of variance.  Then in the following chapter on sociolinguistics we will stay in pattern 
discovery for a chapter.  The interesting thing is that by the end of all this we will have blurred 
the line between hypothesis testing and pattern analysis showing how the same basic statistical 
tools can be used in both, concluding that the difference lies primarily in your approach to 
research rather than in the quantitative methods you use.

4.1 Analysis of Variance: One factor, more than two levels.

With only two levels of a factor (for instance sex is male or female) we can measure an 
experimental effect with a t test.  However, as soon as we go from two to three levels the t test is 
not available and we move to analysis of variance.  

I will start the discussion (in this section and the next) with a set of data contributed by Mark 
Pitt, professor of Psychology at Ohio State University.  Pitt and Lisa Shoaf (2002) studied 
phonological priming in word perception.  They were interested in knowing if the effect of 
phonological overlap between a prime word and the following target word would be the same 
throughout an experiment.  They reasoned that if the priming effect changed as the experiment 
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progressed then one might conclude that the priming effect has more to do with the listener’s 
strategy in the experiment than with a necessary benefit (or impediment) of phonological overlap. 

In a phonological priming study the listener hears a prime word, to which no response is given, 
and then a target word, which does recieve a response.  The response measured by Pitt and Shoaf 
was “shadowing time” - that is how long in milliseconds it took the listener to begin to repeat the 
target word.  For example, in a 3-phoneme overlap trial the listener would hear the prime “stain” 
and then the target “stage” and then respond by saying “stage”.  In a 0-phoneme overlap trial the 
prime might be “wish” and the target “brain”.  Shadowing time was measured from the onset of 
the target to the onset of the listener’s production of the target.  Pitt and Shoaf had a large 
number of listeners in the study (96) and were able to compare the first occurance of a 3-
phoneme overlap trial (after a long initial run of trials with zero overlap) with the last 3-phoneme 
overlap at the end of the experiment.  We’ll take advantage of their large subject pool to first 
explore Analysis of Variance with data sets that have a single observation per listener - reaction 
time from a single trial.

The simple models that we are starting with don’t work for most psycholinguistics experiments 
because psycholinguists almost always use repeated measures (see section 4.3), so I’m using 
simple models to test subsets of the Pitt & Shoaf data where we have only a single observation 
per listener. Keeping our analysis for now confined to a single data point per person allows us to 
avoid the complications that arise when we examine data that involve multiple observations per 
person.  Another characteristic of these initial datasets that makes it possible to use classical 
ANOVA is that we have an equal number of measurements in each cell.

-----------------
A short note about models.  The analysis of variance is a test of a statistical model of the data.  
“Model” is a pretty popular term and is used to mean different things in different research 
contexts so let’s step back and get clear about what a statistical model is.  A computer simulation 
of a proposed neural circuit for processing language is a type of model, so is a box diagram of 
proposed stages of processing in some cognitive process, and so is a proposed account of social-
mediated sound change.  In each of these, the model embodies some assumptions or bits of 
knowledge about the components of a system and the nature of the modeler’s task is to derive 
empirical predictions from the proposed model.  A statistical model, on the other hand, is a 
proposed mathematical description of the data with no assumptions about the possible 
mechanisms that cause the data to be the way they are.  For instance, if we include word 
frequency as an experimental factor and then test whether word frequency has a statistically 
reliable (non-zero) effect on the experimental results, the statistical test involves “modeling” the 
data, but at the end of the day all the statistical test tells us is whether or not word frequency 
seems to influence behavior in the experiment.  The model does not explain why word frequency 
matters - that requires a model of the nonstatistical type (a theory).
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Here’s a simple statistical model of the sort we are considering in this section:

€ 

xij = µ + τi +εij “treatments” model

This statement says that we can describe an observed value xij (a response time, or accuracy 
measure, for example) as made up of three components - the over all mean µ, the average effect of 
the ith treatment effect (τi), and a random error component (εij) that is unique to this particular 
observation j of treatment i.  This statistical model assumes that the treatment effects (τi) which 
are the experimental factors or conditions in a psycholinguistic experiment are different from each 
other.  When we find that the treatment effects are different from each other (see below) we can 
report that there was “a main effect of factor τ” (we’ll get to interaction effects later).  This 
means that the best fitting statistical model includes this factor.   The ANOVA compares the 
model with τ against the null hypothesis which says that we can just as accurately describe the 
data with a “no treatments” model.

€ 

xij = µ + εij “no treatments” model

But, “describe the data” is the right way to characterize what these statistical models do. An 
explanatory account of why the treatment affects the response requires a theory that specifies 
the mechanism - the statistical model is good for testing whether there is any effect to be 
explained but does not provide the explanation.
-------------------

The analyses that I will describe in this section and in section 4.2 assumes that each observation 
in the data set is independent from the others.  I selected data from Pitt & Shoaf’s raw data files 
so that this would be true by following the sampling plan shown schematically in table 4.1. 
Listener S1 provides a data point (x1) in the no overlap, early position condition, listener S2 
provides a data point in the no overlap, mid position cell, and so on.  With this sampling plan we 
know that observation x1 is independent of all of the other observations as assumed by the 
analysis of variance.  It was possible to follow this data sampling plan because Pitt & Shoaf 
tested 96 listeners (16 in each column of table 4.1) and this is a large enough sample to provide 
relatively stable estimates of shadowing time.

Table 4.1.  Data sampling plan with no repeated measures - one observation per listener.

Quantitative Methods in Linguistics Keith Johnson

108



3-phone overlap

x6
x5

x4

S6
S5
S4

x3S3
x2

x1
S2
S1

latemidearlylatemidearly
no overlap

In this section we will discuss an analysis of variance that only has one factor and this factor has 
three levels, or in terms of the model outlined above we have three “treatments” that will be 
compared with each other - the reaction time when prime and target overlap by three phones at 
the beginning, middle and end of a list of phonological priming trials. The measurements of 
reaction time (RT) for the beginning trial is modeled as:

€ 

RTbeg = µ + τbeg + εbeg, j

€ 

RTbeg = 810 + 78+ εbeg, j    Our best guess for RT at the beginning of the list.

where µ is estimated by the overall sample average (810 ms) and τbeg is estimated by the 
difference between the average RT for the beginning trial and the overall average (78).  The model 
predictions for the other list predictions are constructed in the same way.  Now the test is 
whether the treatment effects, the τi, are reliably different from zero.  Another way of stating this 
null hypothesis is to say that we are testing whether the treatment effects are the same, that 
is:τbeg=τmid=τend.

Now the treatment effects that we observe in the data (the differences between the means of 
reaction time at different positions and the overall mean) are undoubtably not exactly equal to 
each other - it would be odd indeed to take a random sample of observations and find the average 
values exactly match each other even if the treatments are actually not different - so the question 
we have to answer is this: Are the observed differences big enough to reject the null hypothesis?

The analysis of variance addresses this question by comparing a model with treatments specified 
to one with no treatments specified.  If the null hypothesis is true in supposing that any 
observed differences among the treatment effects is a function of the random variation component 
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εij in a model which does not have treatment effects, then the magnitude of the differences 
between beginning, middle, and end positions for example, should be comparable to the 
magnitude of the random component εij. 

So we have two ways to estimate the random, error variance.  If variance measured from the τi is 
equivalent to variance measured from εij (in the model with treatment effects), then we can 
assume that the null hypothesis is correct - the differences among the τi are due solely to error 
variance of εij and the null hypothesis model is correct.

To calculate an estimate of error variance from the treatment means in the Pitt and Shoaf dataset 
we compare the means for 3-phone overlap trials from different list positions with the overall 
mean of the dataset.  

The overall average RT of the 96 measurements in our dataset is 810 ms. We will symbolize this 
as 

€ 

x .. - read this as “x-bar, dot, dot”.  (Ninty-six measurements are for 32 listeners tested at each 
list position - beginning, middle, end.  In this section we will take a subset of these data so that 
we have only one measurement from each listener.)  The squared deviation between the means of 
the conditions (the “treatment” means) and the overall mean is calculated in table 4.2. 10891 is 
sum of squared deviations from the treatment means from the grand mean.  To get sum of 
squared deviations per observation from this we multiply by the number of observations in 
each cell  (in the formula below “r” is used as the number of observations per treatment). Thus, 
each mean in table 4.2 stands for 18 observations and so represents 18 deviations of about this 
magnitude.  We have then a sum of squared deviations due to differences among consonants 
(SStreatment) of 347,155 (~32*10891).  This measure is then converted to variance (the mean 
squared deviation) by dividing by the degrees of freedom of the estimate, which in this case is 2 
(the number of treatments minus 1).  This gives an estimate of the variance in our dataset of 
173,577. 
 

€ 

SStreatment = r (x i. − x .. )
2∑ Sum of squares - treatment

  

€ 

MStreatment =
SStreatment

df treatment
 Mean Square deviation (variance) - treatment

If the differences among the means for different consonants are typical of the differences among 
the observations in the dataset generally, then we expect the variance of the dataset to be 
173,577.  If you ignore consonant differences entirely and just calculate the variance of the 96 
numbers in the dataset (recall that variance is the square of the standard deviation) you get a 
variance of 36,669.  This is clearly much smaller than the estimate that comes from the 
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differences between the list position averages, but it is still not a good estimate of variance in the 
dataset because it includes the list position differences.  We need to be able to remove variance 
that is due to position differences from our estimate of the random effect in the treatments model.

Table 4.2. Calculation of the sum of the squared deviations of the treatment means 
from the overall mean RT value in the Pitt_Shoaf1.txt data set.

sum = 10,891475921.16111

€ 

(x i. − x .. )
2

-69-4.678

€ 

x i. − x ..

€ 

x .. =810741805889

€ 

x i.

overallendmiddlebeginning

One way to partition out the consonant (treatment) variance is to subtract the sum of squared 
divation due to consonant differences from the total sum of squared deviations.  The total sum of 
squared deviation is found by summing the squared deviations between each data point compared 
with the grand mean, without regard for which consonant (treatment) the data point represents.

    

€ 

SStot = (xij − x ..∑ )2 SStotal is caluclated from the grand mean

This measure of the sum of squares total for the Pitt & Shoaf dataset is 3,483,523.  So we can 
estimate that the sum of squares that results from removing the treatment effect from the total is 
3,136,368 (= 3,483,523 - 347,155).  This is called the sum of squares of error, SSerror, or the 
residual sum of squares.  It is a measure of how much random variation exists within each cell 
of the design. We calculated it by subtracting SStreatment from SStotal, but we could have also 
calculated it directly. For example, we could add the sum of squared deviations of the beginning 
reaction times from the average RT for beginning trials with the sum of squared deviations for 
middle RTs and for the end RTs.  This somewhat direct approach measures how variable the 
items are within the set of RTs for trials at each position in the list. I used this method to 
measure the SSerror for this dataset and found it to be 3,136,368.  This divided by the degrees of 
freedom for the calculation (n-t = 96-3 = 93) yields an estimate of within-treatment variance of  
33,724 (recall that the variance when we ignored treatment differences was 36,669).

€ 

SSerror = (xij − x i. )
2∑ SSerror is calculated from the treatment means

The partition of variance in our dataset into the treatment and error components results in an 
analysis of variance (ANOVA) table - see table 4.3. The model that we are assuming here is that 
each observation is composed of a treatment effect and some amount of random variation.
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€ 

xij = µ + τi +εij The model assumed in a one-way analysis of variance.

 We have an estimate of variance from how widely the consonant means differ from each other 
(the treatment effect, τi) and from how variable the observations are when consonant doesn’t 
vary (random error, εij).  The ratio of these two estimates of variance (MStreatment/MSerror) 
has a known distribution (named the “F distribution”) for the null hypothesis that the treatment 
effects are all equal to 0.  In particular, if the treatment effects are all equal to 0 then the F ratio 
(MStreatment/MSerror) should be close to 1. Because we are dealing with a sample of data from 
a larger population we can estimate the probability that a particular F value is drawn from a 
population where the treatment effects are all 0.  The procedure for estimating this F ratio 
probability distribution is analogous to the procedure used to derive the t distribution.  In essence 
though, the further an F value is from 1, the less likely it is that the null hypothesis is correct.  A 
“significant” F value (p < 0.05) thus indicates that in all likelihood the best fitting statistical 
model is one that includes treatment effects - that is, that the treatments differ from each other.

H0: τ/d/ = τ/g/ = τ/t/ = τ/k/ = 0  The null hypothesis

Table 4.3 Analysis of Variance table for reaction times in Pitt_Shoaf1.txt.

95 3,483,523Total
33,724  3,136,36893Error

< 0.015.15 173,577347,1552Treatment (cons)

Pr(>F)    F valueMean SquareSum of SquaresDf

Table 4.3 shows the analysis of variance table for the Pitt & Shoaf reaction time data (one 
observation per listener).  The F value is the ratio between variance calculated from the treatment 
effects (MStreatment) and the pooled variance of the observations within each treatment 
(MSerror).  This value should be equal to 1 (MSt = MSe) if there are no treatment effects in the 
data. The observed F value for this data set is so large that it is unlikely that these data could 
have been generated by a “no treatments” model - the differences between the treatments are too 
large to be the result of random differences.

The analysis of variance is based on several assumptions about the data.  First, ANOVA 
assumes  the equality of the variance within each treatment.  We pool the variance among the /t/, 
/d/, /k/, and /g/ voice onset times to get an estimate of the error variance on the assumption that 
variance in these treatments is approximately the same.  We saw this same assumption in the t-
test and discussed in chapter 3 a method to compare variance before pooling.  ANOVA also 
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assumes that the error values εij are normally distributed and independent from each other.  In 
practice, these assumptions are approximately correct psycholinguistic data, and when the 
assumptions aren’t exactly met by psycholinguistic data, the mismatch between model 
assumptions and data isn’t enough to cause concern (ANOVA is actually pretty robust in the 
face of assumption violations, except that the independence assumption turns out to be very 
important.  We’ll discuss this further in a later section).

--------------------
R note.  The data for this first illustration are in the file “Pitt_Shoaf1.txt”.  The reaction time 
measurements are in the column “rt”, and the list position is indicated in column “position”.  

> ps1 <- read.delim(“Pitt_Shoaf1.txt”, sep=” “)
> attach(ps1)

There are thirty-two (r = 32) instances of each of three (t = 3) positions.  I extracted this data 
from Pitt & Shoaf’s larger data set by arbitrarily assigning the 96 listeners to either the early, mid, 
or late groups and then taking a single reaction time measurement from each listener’s data.  This 
arbitrary selection of data defeats Pitt & Shoaf’s careful construction of test lists that put each 
word in each position an equal number of times. Later in the chapter we will use the full 
controlled data set in a repeated measures ANOVA. Although the data are more variable taking 
one observation from each listener, the conclusions that we draw from them are the same.

Recall that the definition of variance is:

    

€ 

var(x ) =
(xij − x .. )

2∑
rt −1

where r is the number of observations in each treatment and t is the number of treatments.

The reason for dealing in squared deviations rather than variance in analysis of variance is that we 
can linearly partition the sum of squared deviations into deviations due to differences between 
the treatments (table 4.2) and to deviation within treatment conditions without worrying about 
the divisors that are used in calculating variance.  We are working here with squared deviations 
from the mean, and if you will recall, the variance of a data set is the average of the squared 
deviations from the mean - the sum of squared deviations divided by the number of observations 
in the dataset.  Therefore, if we know the variance in a dataset we can calculate the sum of 
squared deviations by multiplying the variance times the degrees of freedom. 

    

€ 

SStot = ( xij − x ..∑ )2 = (rt −1) var(x )
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I used this association between variance and sum of squared deviations (SS = variance * df) to 
calculate the SSerror for this VOT dataset.  It is:

> var(rt[position=="early"])*30 + var(rt[position=="mid"])*31 + 
var(rt[position=="late"])*32
[1] 3136368

The total sum of squared deviations (SStot) in the data set can also be calculated from the 
variance. There are 96 measurements in the dataset so the degrees of freedom is 95.  You should 
notice that these two numbers are in table 4.3.

> var(rt)*95
[1] 3483523

Subtract SSerror from SStot to get SStreatment or calculate the treatment effect from table 4.2. Either 
way we get about the same answer (the uneven number of observations in different list positions 
complicates this slightly).

Naturally, you don’t have to do these calculations to do analysis of variance in R.  There is a way 
of reporting, or summarizing a linear equation model to give the analysis of variance table.  This is 
the same lm() that we used to perform linear regression in the last chapter.  It is clearly a very 
versatile function.

> anova(lm(rt~position,data=ps1))
Analysis of Variance Table

Response: rt
          Df  Sum Sq Mean Sq F value   Pr(>F)   
position   2  347155  173577  5.1469 0.007586 **
Residuals 93 3136368   33724                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> 
 
This result tells us that the shadowing time values at the beginning, middle, and end of the 
experiment are not all equal to each other.  Given prior results we expect that the shadowing 
times at the beginning of the list will be longer. Prior expectation, based on theory or previous 
experience, justifies the use of planned comparisons (t tests) to test particular contrasts.  For 
these data planned comparisons contrasting list positions find that shadowing time early in the 
list was longer than in the middle [t(61)=2.06, p<0.05], and end [t(62)=3.04, p< 0.01].  
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Shadowing times from the middle and end of the list were not reliably different from each other 
[t(63)=1.3, p=0.189].

> t.test(rt[position=="early"],rt[position=="mid"],var.equal=T)

Two Sample t-test

data:  rt[position == "early"] and rt[position == "mid"] 
t = 2.0621, df = 61, p-value = 0.04346
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
   2.509136 163.027154 
sample estimates:
mean of x mean of y 
 888.5806  805.8125 

> t.test(rt[position=="early"],rt[position=="late"],var.equal=T)

Two Sample t-test

data:  rt[position == "early"] and rt[position == "late"] 
t = 3.0401, df = 62, p-value = 0.003462
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
  50.39623 243.91657 
sample estimates:
mean of x mean of y 
 888.5806  741.4242 
-------------------------

4.2.  Two factors - interaction.

Now, the finding that reaction time is slower at the beginning of an experiment than at the end 
may simply suggest that listeners get better at the task, and thus have nothing to do with a 
response strategy. Pitt & Shoaf thought of this too and added a condition in which the prime and 
the target do not overlap at all.  Contrasting this no overlap condition at the beginning, middle and 
end of the experiment with the 3-phone overlap condition that we examined above will give a 
clearer picture as to whether we are dealing with a practice effect (which should affect all 
responses) or a phonological priming effect (which should affect only the overlap trials).  

In particular, Pitt & Shoaf (2002) suggested that slower response times observed for 3-phone 
overlap trials (table 4.4) may be due to the listener’s strategy for completing rather than to any 
stable property of lexical processing.  This conclusion is based on the interaction between the 
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overlap factor (zero vs three phones overlap between the prime and the target), and the list 
position factor (trials early, mid, and late in the experiment).  Their argument was that if 
phonological overlap affects lexical processing in general then the effect of overlap should be seen 
throughout the experiment.  Instead, Pitt & Shoaf found an interaction: that the overlap effect 
was only present in the first part of the trial list.

Table 4.4. Two factors in a study of phonological priming.

863

820
905

mid

795696828  

€ 

x 
807691910three

784701745zero
  

€ 

x lateearly

The model tested in this two-factor analysis is:

€ 

xijk = µ + αi + β j + αiβ j + εijk

The αi and βj effects are exactly analogous with the τi (treatment) effect that we examined in the 
one-factor ANOVA of section 4.1. The estimated variance (MSposition and MSoverlap in our 
example) is derived by comparing treatment means (the row and column means in table 4.4) with 
the grand mean.  The sum of square total, SStot, is also caluclated exactly as in section 4.1.  The 
interaction effect αiβj though is new.  This effect depends on the interaction of the two factors α 
and β.

------------------
A note on effects.  In the two factor analysis of variance, we have two main effects (a and b) and 
one interaction effect (ab).  It is pretty easy to compute each one of the coefficients in the model 
directly off of the average values in table 4.4.  For example, the effect for three-phone overlap is 
α[3] = 807 - 796 = +11, the difference between the RT of overlap trials and the overall average 
RT in the data set.  The other main effect coefficients are calculated in the same way, subtracting 
the actual value from the predicted value. Note that the treatment effects coefficients for an effect  
sum to 0.

α[3] = 807 - 795 = +11.6
α[0] = 784 - 795 = -11.6
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β[early] = 828 - 795 = +32.2
β[mid] = 863 - 795 = +67.1
β[late] = 696 - 795 = -99.3

The interaction effects can also be easily calculated now that we have the main effects.  For 
instance, given our main effects for position and overlap we expect the RT for early 3-phone 
overlapped trials to be 839 - the overall mean (795 ms) plus the effect for overlap (+11.6 ms), 
plus the effect for being early in the list (+32.2 ms). The actual average RT of 3-phone 
overlapped trials early in the list was 910 ms, thus the interaction term α[3]β[beg] is 910 - 839 = 
71 ms. 

€ 

RT[ 3][ beg]k = µ +α[ 3] + β[ beg] + α[ 3]β[ beg] + ε

= 795 +12 + 32 + 71+ ε

= 910+ ε

It is useful to look at the size of the effects like this.  The position effect is larger than the 
overlap effect while the interaction is the largest effect of all. You can work out the other 
interaction effect terms to see how symmetrical and consistently large they are.

-------------------

The shadowing time data distributions are shown in figure 4.1.  As we saw when we looked at 
the 3-phone overlap data, shadowing times seem to be longer in the 3-phone overlap trials early 
in the experiment but not later.  Now comparing data from a control condition - trials that have 
no overlap between the prime and the target - we can test whether the faster shadowing times 
that we see in the later 3-phone overlap trials are a result of a general improvement over th course 
of the experiment.  In the general improvement case we would expect the no-overlap data to 
pattern with the 3-phone overlap data.  This is a test of an interaction - do the factors list 
position and overlap interact with each other?  The “general improvement” hypothesis predicts 
that there will be no interaction - the overlap conditions will show the same pattern over the 
different list positions.  The “something is going on with overlap” hypothesis predicts that the 
pattern over list positions will be different for the no overlap and 3-phone overlap trials.  This 
means that the interaction terms α[3]β[beg], α[3]β[mid], α[3]β[end],  etc. will be different from 
each other, that the best-fitting statistical models should include the interaction terms. 
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Figure 4.1.  Shadowing time for no overlap (gray) and 3-phone overlap 
(white) phonological priming, as a function of list position (a subset of data 
from Pitt & Shoaf, 2002, experiment 2). 

The analysis of variance (table 4.5) of this subset of the Pitt & Shoaf (2002, experiment 2) data 
suggests that there is a reliable interaction.  We find a significant main effect of position [F(2,90) 
= 8.6, p < 0.01] and more importantly for the test distinguishing our two hypotheses we find a 
reliable interaction between position and overlap [F(2,90)=4.7, p<0.02].  This crucial interaction 
is shown in Figure 4.1.  

Table 4.5. Two factor analysis of variance of the “Pitt_Shoaf2.txt” dataset.  The 
R command to produce this table was: anova(lm(rt~position*overlap, 
data=ps2)).

Analysis of Variance Table
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Response: rt
                 Df  Sum Sq Mean Sq F value    Pr(>F)    
position          2  476184  238092  8.3465 0.0004729 ***
overlap           1   10592   10592  0.3713 0.5438308    
position:overlap  2  284302  142151  4.9832 0.0088608 ** 
Residuals        90 2567333   28526                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

A set of planned comparisons between the no overlap “control” data and the 3-phone overlap 
phonological priming data indicate that the 3-phone overlap pairs were shadowed more slowly 
than the no overlap prime-target pairs at the beginning of the experiment [t(26.7) = -3.4, p<0.01], 
while the no overlap and 3-phone overlap conditions did not differ from each other in the middle 
of the experiment [t(29.2) = 1.4, p=0.18] and at the end of the experiment [t(30)=0.29, p=0.78].  

---------------------
R note. The data for this section are in the file “Pitt_Shoaf2.txt”.  As with Pitt_Shoaf1.txt, I took 
only a single reaction time measurement from each listener in the experiment for the dataset in 
Pitt_Shoaf2.txt.  We have six groups (3 positions X 2 overlaps), each of which is made up of 16 
listeners.  The selection of which listeners would be in each group was done arbitrarily.

> detach(ps1)
> ps2 <- read.delim("Pitt_Shoaf2.txt", sep=" ")
> attach(ps2)

The factor() function is used to put the levels of the “position” factor into a sensible 
(nonalphabetic) order so Figure 4.1 will look right.

> ps2$position <- factor(ps2$position,levels=c("early","mid","late"))  

Figure 4.1 was created using the boxplot() procedure.  The first call plots the gray boxes for the 
subset of shadowing times where there was no phonological overlap between prime and target.  
The second call adds narrower white boxes plotting the distributions of times when the overlap 
was three phones.

> boxplot(rt~position,data=ps2,notch=T, col="gray", subset=overlap=="zero", 
boxwex=0.7, ylim=c(450,1250))

> boxplot(rt~position,data=ps2,notch=T, col="white", subset=overlap=="three", 
boxwex=0.5, add=T)

> legend(2.8,1225,c("zero","three"),fill=c("lightgray","white"))
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Boxplot() produces a “box and whisker” summary of the data distributions.  The box has a notch 
at the median and covers the first and third quartiles of the distribution.  This means that 50 
percent of the data points lie within the box.  The whiskers extend out to the largest and smallest 
data values unless they are beyond 1.5 times the length of the box away from the box, in which 
case the outlier data values are plotted with dots.  So what we see in figure 4.1 is a representation 
of six distributions of data.

The planned comparisons that explore the position X overlap interaction are shown below.  Note 
that I used the subset syntax to select RT measurements to include in the tests.  For example, 
rt[position==”early” & overlap==”zero”] selects the reaction times for the 16 listeners who were 
selected to represent the no overlap, early condition.

> t.test(rt[position=="early" & overlap=="zero"],rt[position=="early" & 
overlap=="three"])

Welch Two Sample t-test

data:  rt[position == "early" & overlap == "zero"] and rt[position == "early" 
& overlap == "three"] 
t = -3.4015, df = 26.669, p-value = 0.002126
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -278.23698  -68.78802 
sample estimates:
mean of x mean of y 
 744.6875  918.2000 

 --------------------------------------

4.3 Repeated measures

As I mentioned in section 4.1, the analyses described in sections 4.1 and 4.2 assume that each 
observation in the data set is independent from the others, and made it this way by selecting 
data from Pitt & Shoaf’s raw data files following the sampling plan shown in table 4.1. 

This sampling plan gives us a data set that meets the independence assumption of the analysis of 
variance but this type of sampling is disadvantagious for a two main reasons.  First, it requires 
that we test many more subjects than is actually necessary. And second, it keeps us from using 
each subject as his/her own control.  Table 4.6 expands on this second point.  Here we see a data 
sampling plan with repeated measures.  In this scheme, which was used by Pitt & Shoaf in their 
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study, we collect six reaction time values from each listener.  Recall that I said that the “no 
overlap” condition was added as a control to help guide our interpretation of the 3-phone overlap 
condition.  In the independent observations scheme of table 4.5 listeners S1, S2, and S3 provide 
the control reaction times which will then be compared with the reaction times given by listeners 
S4, S5, and S6. Thus, any individual differences between the listeners (alertness level, motivation, 
etc.) contribute to random unexplained variation among the conditions.  When we compare 
listener S1’s reaction times in the six conditions, though, we have a somewhat more sensitive 
measure of the differences among the conditions because presumably his/her alertness and 
motivation is relatively constant in the test session.

Table 4.6.  Data sampling plan using repeated measures - six observations per listener.

x12x11x10x9x8x7
and so on...

x6x5x4x3x2

3-phone overlap

S6
S5
S4
S3

x1
S2
S1

latemidearlylatemidearly
no overlap

The statistical complication of the repeated measures sampling scheme is that now the individual 
observations are not independent of each other (e.g. x1-6 were all contributed by S1) so the 
standard analysis of variance cannot be used.

We saw in chapter 3 that if you have two measurements from each person you can use a paired t 
test instead of an independent samples t test and the test is much more powerful because each 
person serves as his/her own control.  Recall, in the paired t test the overall level for a person 
may be relatively high or low but if people with slow reaction times show a difference between 
conditions and people with fast reaction times also show a difference, then the overall difference 
between people doesn’t matter so much - the paired comparison tests the difference between 
conditions while ignoring overall differences between people.

That’s what repeated measures analysis of variance does too.  However, just as standard 
ANOVA lets us look at factors that have more than 2 levels, and lets us look at interactions 
among factors for independent observations, so repeated measures ANOVA extends the concept 
of matched comparisons to more complicated designs.
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In a dataset with more than one observation per person, the observations all from one person 
(within subject) are often more highly correlated with each other than they are with 
observations of other people.  For example, in reaction time experiments subjects typically differ 
from each other in their average reaction time.  One person may be a bit faster while another is a 
bit slower.  It may be that despite this overall difference in reaction time an experimental 
manipulation does impact behavior in a consistent way for  the two subjects.  

Here’s an illustration using hypothetical data to show how repeated measures analysis of 
variance works.  If we want to know if an effect is consistently present among the participants of 
a study we need to look at the subjects individually to see if they all show the same pattern.  
This is shown in the comparison of two hypothetical experiments in Figures 4.2 and 4.3.  In 
these hypothetical data we have two experiments that resulted in the same overall mean 
difference between condition A and condition B.  In condition A the average response was 10 and 
in condition B the average response was 20.  However, as the figures make clear, in experiment 1 
the subjects all had a higher response for condition B than condition A, while in experiment 2 
some subjects showed this effect and some didn’t.
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e

condition
Figure 4.2.  The average response in condition A was 10, and the average response 
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in condition B was 20.  In this hypothetical experiment the subjects (each of 
which is plotted individually) showed the same basic tendency to have a higher 
response in condition B.  Thus the condition by subjects interaction is relatively 
small.
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Figure 4.3.  In this experiment the average response in condition A was again 10 
and the average response in condition B was 20, but this time there was a subset 
of subjects (marked with filled symbols) who showed the opposite trend from 
that shown by the majority of the subjects.

If we act as if the observations in the datasets are independent of each other - as if we did not 
have repeated measures - then analysis of variance shows a significant difference between 
condition A and condition B in both experiments.  The F value for experiment 1 in this 

Quantitative Methods in Linguistics Keith Johnson

123



independent observations ANOVA was F(1,30) = 212, p < 0.01, and for experiment 2 it was 
F(1,30)=13.2, p < 0.01.  However, when we conduct the ANOVA with repeated measures we 
find that the difference between conditions A and B was significantly greater than chance in 
experiment 1 [F(1,15) = 168, p < 0.01] while this distinction was less reliable in experiment 2 
[F(1,15)=7, p = 0.018].  The  inconsistency among subjects in realizing the AB contrast results in 
a lower likelihood that we should conclude that there is a real difference between A and B in this 
population even though the average difference is the same.

---------------------
R note.  The comparison of the hypothetical experiments 1 and 2 (figures 4.2 and 4.3) was done 
with the following R commands.

e12 <- read.delim("exp1versusexp2.txt")  # read the data
e12$subj <- factor(e12$subj) # treat subject as a nominal variable
e1 <- subset(e12,experiment=="exp1") # get the exp1 data
e2 <- subset(e12,experiment=="exp2") # get the exp2 data

# an incorrect analysis of variance - yes R lets you make mistakes
anova(lm(response~condition,data=e1))  # incorrect!!!!

To see what is happening in the repeated measures analysis - the correct analysis with (subj) as 
the error term in the test of the condition main effect, look at these three ANOVA tables.  First, 
we have a test of lm(response~condition, data=e2).

          Df  Sum Sq Mean Sq F value   Pr(>F)   
condition  1  736.80  736.80  13.261 0.001012 **
Residuals 30 1666.85   55.56                    

The F value here is 736.8 divided by 55.6.  The error term, 55.6,  is the variance of the data 
values around the means of conditions A and B, incorrectly treating each observation as if it is 
independent of all the others.  We saw in Figure 4.4 that the subjects were not consistent in their 
responses to the A/B contrast, so we might expect the interaction between condition and subject 
to be large in this data set.  The table produced by lm(response~condition*subj)  
shows a pretty large MS value (variance) attributable to the condition:subj interaction, as we 
would expect because the subjects showed different patterns from each other.

               Df  Sum Sq Mean Sq F value Pr(>F)
condition       1  736.80  736.80               
subj           15   89.38    5.96               
condition:subj 15 1577.47  105.16               
Residuals       0    0.00        
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To test whether the condition main effect was consistent across subjects we use the MS for the 
condition:subj interaction as the denominator (error term) in the F ratio.  In this case that 
means that we would take F(1,15) = 736.8/105.16 = 7.  Note that the variance due to condition is 
the same in both the repeated measures analysis (with condition:subj as the error term) as it is in 
the non-repeated measures analysis  (with the residual mean square as the error term).  The only 
change is in the selection of the error term.  The correct error term is selected automatically in R 
using aov() with subject specified as the error variable, and that we have repeated measures 
over the factor condition.  

> summary(aov(response~condition+Error(subj/condition),data=e2))

Error: subj
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals 15 89.382   5.959               

Error: Within
          Df  Sum Sq Mean Sq F value  Pr(>F)  
condition  1  736.80  736.80  7.0062 0.01830 *
Residuals 15 1577.47  105.16  

This analysis uses the MS for the condition:subj interaction as the error term (denominator) in 
the F ratio testing whether there was a reliable or consistent effect of condition.  And in general 
the key method in repeated measures analysis of variance, then, is to test the significance of an 
effect with the effect:subjects interaction as the error term in the F ratio.  The aov() function with 
its option to specify the Error term simplifies the analysis of complicated designs in which we 
have several within-subjects factors (for which we have repeated measures over each participant) 
and between-subjects factors (for which there were different groups of people). 
-------------------

4.3.1 An example of repeated measures ANOVA

Now, at long last, we can analyze Pitt & Shoaf’s (2002) data.  Figure 4.4 shows the shadowing 
time distributions for all of the critical trials at the beginning, middle, and end of the experimental 
session, for no overlap prime/target pairs and for 3-phone overlap pairs.  The pattern that we 
saw in sections 4.1 and 4.2 is now quite clear.  Responses in the early 3-phone overlap trials are 
longer than any of the other responses which are centered around 800 ms.  We found with a 
subset of these data that there was an interaction between position and overlap and it looks like 
that will be the case again, but how to test for it?

Following the procedure for a repeated measures analysis of variance that was just described we 
can construct an ANOVA table with three experimental variables - position, overlap, and subject.  

Quantitative Methods in Linguistics Keith Johnson

125



Notice from the analysis of variance table produced with this model (rt ~ position*overlap*subj) 
that there are no F values. This is because all of the variance in the data set is covered by the 
variables - by the time we get to the early, no overlap reaction time produced by subject S1 there 
is only one value in the cell - and thus no residual variance between the model predictions and the 
actual data values.  

Figure 4.4. Phonological priming effect contrasting trials with 3-phones 
overlapping between the prime and target and with no overlap between prime and 
target.  This comparison is made at three points during the experimental session 
(data from Pitt & Shoaf, 2002, experiment 2).
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This is just as well, because the analysis of variance table in table 4.7 is incorrectly based on the 
assumption that the observations in the dataset are independent of each other.  We need to 
perform a repeated measures analysis.  At this point we can either use the values in table 4.7 to 
compute the repeated measures statistics by hand, or use a different R call to compute the 
repeated measures statistics for us.  It isn’t hard to compute the F values that we are interested 
in. The position main effect is MSp/MSp:s = 55829/25967 = 2.15.  The overlap main effect is 
MSo/MSo:s = 19758/15566 = 1.27. And the position by overlap interaction is MSp:o/MSp:o:s = 
142212/14051 = 10.12.  

Table 4.7. Analysis of variance table for the repeated measures analysis of Pitt & 
Shoaf (2002, experiment 2).  The R call to produce this table was:  
anova(lm(rt~position*overlap*subj,data=ps3))

0  0Residuals
14051               2697804192position:overlap:subj
15566               149437896overlap:subj

25967               4985721192position:subj
142212               2844242position:overlap
106118               1018734496subj
19758               197581overlap

55829               1116582position

Pr(>F)F valueMean SqSum SqDf

        

A call to summary(aov()) with these data, and the error term Error(subj/(position*overlap)) 
indicating that position and overlap are within-subject factors, produces the same F values that I 
calculated above, but also gives their probabilities.

Table 4.8. Repeated measures ANOVA table for Pitt & Shoaf (2002) experiment 
2.  The R call to produce this table was:  
summary(aov(rt~position*overlap+Error(subj/(position*overlap)),da
ta=ps3))
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140512697804192position:overlap:subj
<0.0110.121422122844242position:overlap

15566149437896overlap:subj
0.261.2719758197581overlap

259674985721192position:subj
0.122.15558291116582position
Pr(>F)F valueMean SqSum SqDf

In the earlier analysis we had a significant main effect for position as well as the significant 
interaction between position and overlap.  With the larger set of data it becomes apparent that 
the interaction is the more robust of these two earlier findings.

Naturally, we want to explore these findings further in a planned comparison or post-hoc test. 
However the t-tests that we used earlier assume the independence of the observations, and since 
we have repeated measures we can’t use t-test to explore the factors in more detail. The usual 
strategy at this point in psycholinguists is to perform another repeated measures ANOVA on a 
subset of the data.  For example, I looked at the effect of overlap for the early, mid, and late trials 
in three separate repeated measures ANOVAs and found a significant difference between no 
overlap and 3-phone overlap conditions in the early list position [F(1,96)=21, p<0.01], but no 
significant phonological priming effects at the middle [F(1,96)=1.3, p=0.25] or end 
[F(1,96)=1.16, p=0.28] of the experiment.  These analyses suggest that the first few trials 
involving a substantial amount of phonetic overlap between prime and target are in some sense 
surprizing to the listener resulting in a delayed shadowing response.

I wanted to explore this a little further so I pulled trial-by-trial data out of Pitt & Shoaf’s raw 
data.  I binned these data taking the average reaction time for the first seven responses for each 
degree of phonological overlap between prime and target, and then for the next seven responses, 
and so on.  This produced a somewhat smoothed representation of shadowing response times as 
the experiment progressed for prime/target pairs that overlapped by 0, 1, 2, and 3 phones. These 
data are shown in figure 4.5, and seem to suggest that early in the experiment listeners were 
slowed by the 3-phone overlap, while later in the experiment they responded more quickly when 
there was an overlap of 1 or 2 phones.  Interestingly though, neither of these effects look like 
pure phonological priming (if such a thing exists) because the effects of overlap seem to change 
over the course of the experiment.
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Figure 4.5.  Response to phonological overlap between prime and target in Pitt & 
Shoaf (2002) experiment 2, as the experiment progressed from the first bin of 7 
trials to the end.

-------------------
R-note.  Specifiying the Error term in the aov() command is a little tricky.  For example, the 
specification Error(subj/position*overlap) is interpreted to mean that we want to test for a set of 
error terms - subj:position, overlap, and subj:position:overlap.  This is not quite right. We want 
subj:position, sub:overlap, and subj:position:overlap and to get this set of error terms we need to 
specify the error term as Error(subj/(position*overlap)) - that position and overlap are both 
within-subject factors.

When the number of observations in each cell of the model is not equal, the printout from aov() 
includes a number of additional tests. The wanted F values ARE printed and can be checked 
against the simple anova(lm()) printout, so I just ignore the extraneous tests given by aov().

> summary(aov(rt~position*overlap+Error(subj/(position*overlap)),data=ps3))
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Error: subj
          Df   Sum Sq  Mean Sq F value Pr(>F)
Residuals 96 10187344   106118               

Error: subj:position
           Df  Sum Sq Mean Sq F value Pr(>F)
position    2  111658   55829    2.15 0.1193
Residuals 192 4985721   25967               

Error: subj:overlap
          Df  Sum Sq Mean Sq F value Pr(>F)
overlap    1   19758   19758  1.2692 0.2627
Residuals 96 1494378   15566               

Error: subj:position:overlap
                  Df  Sum Sq Mean Sq F value    Pr(>F)    
position:overlap   2  284424  142212  10.121 6.623e-05 ***
Residuals        192 2697804   14051                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The planned comparisons that I performed with this repeated measures ANOVA was done by 
taking a subset of data, and then performing a one-way ANOVA on the subset, still using the 
subject:overlap mean square as the error term since we have repeated measures on the items being 
compared.

> subset(ps3,c(position=="early")) -> ps3.early
> summary(aov(rt~overlap+Error(subj/overlap),data=ps3.early))

Error: subj
          Df  Sum Sq Mean Sq F value Pr(>F)
Residuals 96 4133049   43053               

Error: subj:overlap
          Df  Sum Sq Mean Sq F value    Pr(>F)    
overlap    1  266252  266252   21.55 1.093e-05 ***
Residuals 96 1186098   12355                      
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

Figure 4.4 was made using the plotmeans() function which is available in the “gplots” package of 
routines.  This is not a standard part of the R package so you may need to download the package 
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from CRAN using the “package installer”.  Once it is downloaded you use the library() function 
to make the functions in the package available in your R session.  Here are the commands that I 
used for Figure 4.4.

> plotmeans(rt~position,data=ps3, subset=(overlap=="zero"), n.label=F, 
ylim=c(750,950), ylab="Reaction Time (ms)", xlab="", cex=2)
> plotmeans(rt~position,data=ps3, subset=(overlap=="three"), n.label=F, cex=2, 
pch=2, add=T)
> legend(2,950,title="Phonetic overlap",legend=c("zero phones","three 
phones"),pch=c(1,2))

--------------------

4.3.2 Repeated Measures ANOVA with a between-subjects factor.

Here’s another quick example of repeated measures ANOVA, this time with a between-subjects 
grouping variable.  We’re using a data set of reaction times in an AX phonetic discrimination task.  
Listeners hear two sounds and press either the “same” button if the two are identical or the 
“different” button if the two sounds are different in any way.

The raw data (correct responses only) were processed to give the median reaction time 
measurement for each listener for each pair of sounds presented.  These are our estimates of how 
long it took each person to decide if the pair is the same or different, and we think that this is a 
good measure of how different the two sounds are.  So each listener is measured on each of the 
pairs of sounds. This is our “within-subjects” repeated measurements variable because we have 
repeatedly measured reaction time for the same person, and we have an estimate of reaction time 
for each listener on each of three different pairs of sounds.

We also have one “between-subjects” variable because we have four groups of listeners - 
American English native speakers who never studied Spanish, have a beginner’s knowledge of 
Spanish, or have an “intermediate” knowledge of Spanish, and then a group of Latin American 
Spanish native speakers.

When I analyzed this data in SPSS I set the data up so that there was one line for each listener.  
So subject 229, who is in the “beginning Spanish” group of listeners had a median RT for the 
same pair /d/-/d/ of 645 milliseconds, for the different pair /d/-/D/ of 639, and so on.

       
group listener    d_d    d_r   d_th    r_r   r_th  th_th 
begin     229  645.0  639.0  620.0  587.0  635.0  618.0 
begin     230  631.0  635.5  595.0  607.0  603.0  728.0 
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begin     234  746.0  781.5  719.5  704.0  768.0  715.0 
begin     235  800.5  708.5  668.0  708.0  663.0  719.5 
begin     236  582.0  849.5  596.0  557.5  629.5  585.0 

The SPSS “repeated measures” analysis produced using this data organization is very complete.  
Here’s what I did to produce a similar analysis in R.

Note, this analysis style has the advantage that if you test several within subjects factors the data 
file is easier to produce and manage.

1) Organize the data with a single column for the dependent measure - MedianRT, and a 
column also for each independent measure.  I used the E-Prime utility program “Data Aid” to 
produce this data file.  You can also use a spreadsheet program, just remember that R wants to 
read files in raw .txt format.  Here are the first few lines of the data file.

group   pair listener MedianRT
begin   d_d     229    645.0
begin   d_d     230    631.0
begin   d_d     234    746.0
begin   d_d     235    800.5
begin   d_d     236    582.0
begin   d_d     247    646.0
begin   d_d     250    954.0
begin   d_d     252    692.5
begin   d_d     253   1080.0

2) Read the data into R.

> spaneng <- read.delim("spanengRT.txt") 
> spaneng$listener <- factor(spaneng$listener)

3) Take a subset of the data - just the “different” pairs.  I could have done this in step 1) above, 
but it isn’t too hard to do it in R either.

> speng.subset <- subset(spaneng, pair == "d_r" | pair == "d_th" | pair == 
"r_th", select=c(group,pair,listener,MedianRT)) 

4) Now use the aov() function in R to perform the repeated measures analysis of variance.
Notice in this command that we specify the data object “speng.subset” and a model to predict 
the MedianRT from which pair of sounds was being played and which group the listener belongs 
to.  The key element of this analysis is that we are specifying that we want analyses for error 
terms that nest pair within the Subject factor.  So the term “Error(Subject/pair)” is the key to 
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making this a repeated measures analysis.

> summary(aov(MedianRT~pair*group+Error(listener/pair),data=speng.subset))  

Error: listener
           Df  Sum Sq Mean Sq F value  Pr(>F)   
group      3  461500  153833  3.3228 0.02623 * 
Residuals 55 2546290   46296                   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1   

Error: listener:pair
             Df Sum Sq Mean Sq F value    Pr(>F)     
pair         2 121582   60791 47.9356 1.069e-15 *** 
pair:group   6  38001    6334  4.9942 0.0001467 *** 
Residuals  110 139500    1268                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

I’ll leave as an exercise for the reader to explore the “pair by group” interaction further with 
planned comparisons and graphs. Here’s one way to graph the results of this experiment.

> plotmeans(MedianRT~pair,data=speng.subset,subset=group=="nospan", n.label=F, 
ylim=c(600,950), ylab="Reaction Time (ms)",cex=2)
> plotmeans(MedianRT~pair,data=speng.subset, subset=group=="spannat", 
n.label=F, cex=2,add=T,pch=2,)

-------------------------------

4.4 The “language as fixed effect” fallacy.

The heading of this section is the title of a seminal paper by Herb Clark (1973). He pointed out 
that when we choose some words to ask people to say, or choose some sentences to ask people 
to rate, we are sampling from all of the possible words and sentences that could have been used in 
the experiment, just as we sample from a population of potential subjects.  Do your results 
generalize to other similar words or sentences?  In repeated measures analysis we treated subjects 
as a random effect by using the subjects by treatment interactions as the error variance estimates 
in ANOVA.  Clark advocated doing this also with language materials.  Essentially suggesting that 
we do two separate analyses of each dataset.  First, asking whether these effects seem to be 
generalizable to other people, and again asking if the results seem to be generalizable to other 
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words or sentences1 .

I will use an interesting data set donated by Barbara Luka (Psychology, Bard College) to illustrate 
the use of two F values to test every effect - the subjects analysis and the items analysis.  
Following Clark ‘s (1973) suggestion we will combine F values found in the subjects analysis and 
F values from the items analysis to calculate the minF’ - our best estimate of the reliability of 
effects over people and sentences. Luka and Barsalou (2005) tested whether subjects’ judgement 
of the grammaticality of a sentence would be influenced by mere exposure to the sentence, or 
even by mere exposure to a sentence that has a similar grammatical structure to the one they are 
judging.  In their experiment 4, Luka and Barsalou asked participants to read a set of sentences 
outloud for a tape recording. Then after a short distractor task (math problems) they were asked 
to rate the grammaticality of a set of sentences on a scale from 1 “very ungrammatical” to 7 
“perfectly grammatical”.  One half of the 48 sentences in the grammaticality set were related in 
some way to the sentences in the recording session - 12 were exactly the same, and 12 were 
structurally similar but with different words. Half of the test sentences were judged in a pretest 
to be highly grammatical and half were judged to be moderately grammatical.

(1) highly grammatical
reading task It was simple for the surgeon to hide the evidence.
identical It was simple for the surgeon to hide the evidence.
structural It is difficult for Kate to decipher your handwriting.

(2) moderately grammatical
reading task There dawned an unlucky day.
identical There dawned an unlucky day.
structural There erupted a horrible plague.

After the experiment was over Luka and Barsalou asked the participants whether they noticed 
the identical and structural repetition. 22 of 24 said they noticed the identical repetitions and 18 
of 24 said that they noticed the structural repetitions - saying things like “grammatical errors 
were alike in both sections” or “wording of the sentences was in the same pattern”, but also 
“same type of words”.  So, just as with the Pitt & Shoaf (2002) phonological priming study, the 
participant’s awareness of repetition and perhaps strategic response to the repetition may be a 
factor in this experiment.

In a nutshell (see figure 4.6), what Luka and Barsalou found is that repetition, either identical or 
structural, results in higher grammaticality judgements.  This finding is rather interesting for a 
1 Raaijmakers et al. (1999) emphasize that it is important to report the minF’, which will be discussed later in this 
section, and not just the F1 and F2.  They also point out that in many psycholinguistic studies the language items 
that are utilized are tested in counter-balanced designs or with matched item designs for which an items analysis is 
not needed at all.  This is an important reference!
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couple of different reasons, but before we get to that let’s talk about how to test the result.  The 
first step is that we conduct a repeated measures analysis of variance with repetitions over 
subjects.  Luka & Barsalou did this by taking the average rating for each person in the experiment, 
for each combination of factors - familiarity, grammaticality, and type of repetition.  This results 
in eight average rating values for each subject, corresponding to the eight boxes in figure 4.6.  
Keep in mind here that we are averaging over different sentences, and acting as if the differences 
between the sentences don’t matter. This is OK because later we will pay attention to the 
differences between the sentences.

The “subjects” analysis then is a repeated measures analysis of variance exactly as we have done 
in each of the examples in section 4.3.  Using the raw rating data we get exactly the same F values 
reported by Luka & Barsalou (2005).  I decided to use the arcsine transform with these data 
because the rating scale has a hard upper limit and ratings for the “highly grammatical” sentences 
were smooshed up against that limit, making it difficult to measure differences between 
sentences.  In this analyis, as in Luka & Barsalou’s analysis, we have main effects for 
grammaticality [F1(1,25)=221, p<0.01] and familiarity [F1(1,25)=10.5, p<0.01].  Two effects 
came close to significant (this analysis is using α=0.01 as the critical value):  repetition type 
[F1(1,25)=5.6, p<0.05], and the three-way interaction between grammaticality, familiarity, and 
repetition type [F1(1,25)=3.7,p=0.06].  Notice that in this report I am using the symbol F1 in 
place of plain F.  Following Clark (1973), this is the usual way that psycholinguists refer to the F 
values obtained in a subjects analysis.  The items analysis F values are written with F2 and in 
general we expect that if we are going to claim that we have found an effect in the experiment it 
must be significant in both the subject analysis and in the item analysis and the minF’ 
combination of F values must also be significant.
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Figure 4.6. Results of Luka & Barsalou (2005) experiment 4.  The two boxes on 
the left show results for the highly grammatical sentences, while the two boxes on 
the right are for the moderately grammatical sentences.  Within these groupings 
the identical repetitions are on the left and the structural repetitions are on the 
right.  Gray boxes plot the grammaticality rating when then sentence was repeated 
(identically or structurally) and white boxes plot the ratings when the same 
sentence was not primed during the reading portion of the experiment.

The items analysis of these grammaticality rating data has repeated measures over just one factor.  
Sentences were reused in different lists of the materials so that each sentence was presented half 
the time as a novel sentence and half the time as a repeated sentence (either structural repetitition 
or identical repetition).  Obviously Luka & Barsalou couldn’t have used the same sentence in 
both the highly grammatical condition and in the moderately grammatical condition, so 
grammaticality was a between-items factor.  In addition they treated the kind of repetition as a 
between-items factor as well.  So the repeated measures analysis of variance uses the “items” 
main effect as the error term for the between items effects, and the items by familiarity 
interaction as the error term for the familiarity main effect and all interactions involving 
familiarity.  
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This analysis, again using the arcsine transform to make the data distributions more normal, 
found the same two significant effects that we found in the subjects analysis. Highly grammatical 
sentences were judged to be more grammatical than the moderately grammatical sentences 
[F2(1,43)=77, p<0.01].  This indicates that the participants in the experiment agreed with the 
participants in the pretest (whose judgements were used to determine the grammaticality 
category of each sentence).  There was also a significant effect of familiarity [F2(1,43)=9.4, 
p<0.01].  New items had an average familiarity rating of 5.6 while repeated items (averaging over 
identical repetition and structural repetition) had a higher average rating of 5.8.  This increased 
“grammaticality” for repeated sentences and sentence structures was found to be significant in 
both the subjects analysis and in the items analysis.

Now we combine the information from the subjects analysis and the items analysis to calculate 
the minF’ - the ultimate measure of whether the experimental variable had a reliable effect on 
responses, generalizing over both subjects and items. MinF’ is an estimate of the lower limit of 
the statistic F’ (F-prime) which cannot usually be directly calculated from psycholinguistic data.  
This statistic evaluates whether the experimental manipulations were reliable over subjects and 
items simulataneously.  I would say at this point that the minF’ statistic is a high bar to pass. 
Because minF’ is a lower-limit estimate, telling us the lowest value F’ could have given the 
separate subjects and items estimates, it is a conservative statistic which requires strong effects in 
both subject and items analyses (which means lots of items).  In experiments where the items are 
matched across conditions or counter-balanced across subjects, it may not necessary to use items 
analysis and the minF’ statistic.  See Raaijmakers et al. (1999) for guidance.

To calculate minF’ divide the product of F1 and F2 by their sum:

    

€ 

minF' = F1 * F2
F1 + F2

The degrees of freedom for the minF’ is also a function of the subjects and items analyses:

    

€ 

df =
F1 + F2( )

2

F1
2 * n2 + F2

2 * n1

In this formula, n1 is the degrees of freedom of the error term for F1 and n2 is the degrees of 
freedom of the error term for F2.

Quantitative Methods in Linguistics Keith Johnson

137



Table 4.9 shows the results of the minF’ analysis of Luka and Barsalou’s data.  Both the 
grammaticality and familiarity main effects are significant in the minF’ analysis, just as they were 
in the separate subjects and items analyses, but the minF’ values make clear that the repetition 
type effect which was significan by subjects and somewhat marginally significant in the items 
analysis (p=0.195) is not even being close to significant.  

Table 4.9. MinF’ values (and the error degrees of freedom) in the analysis of Luka 
and Barsalou’s data.  The F values found in the subjects analysis are shown in the 
first column. The second column shows the F values from the items analysis.  F 
values that are significant at p< 0.05 are underlined.

650.951.33.7gram*fam*rep

451.003.51.4fam*rep

631.321.75.6repetition type

654.969.410.5familiarity
6557.1077.0221.0grammaticality

dfminF’F2F1

Before wrapping up this chapter I would like to say that I think that Luka and Barsalou’s (2005) 
finding is very interesting for linguistics because it suggests that grammaticality is malleable -that 
“mere exposure” tends to increase the acceptability of a sentence structure.  Additionally, it is 
interesting to me that it is structure that seems to be exposed in these sentences because there 
were no reliable differences between the identical repetitions and the structural repetitions and 
because the identical repetitions are also structural repetitions. The implication is that sharing the 
words in the repetition added nothing to the strength of the repetition effect.  The picture of 
syntactic knowledge that seems to emerge from this experiment (and others like it in the 
literature) is that syntactic knowledge is about structures rather than exemplars, and yet that it 
emerges gradiently from exposure to exemplars.  

---------------------
R note.  Many thanks to Barbara Luka for the data files.  We have for this example two sets of 
data.  One has the average rating given by each subject for each combination of factors in the 
experiment, so this means that there are eight data points for each of 26 subjects in this file.  The 
commands to read the file and perform the “subjects” analysis are:
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> LB1 <- read.delim("LukaBars05Exp4_subj.txt")
> LB1$SUBJ <- factor(LB1$SUBJ)
> summary(aov(2/pi*asin(sqrt((RATING/7)))~GRAMMATICALITY*FAMILIARITY* 
TYPE.TOKEN+Error(SUBJ/(GRAMMATICALITY*FAMILIARITY*TYPE.TOKEN)),data=LB1))

Note that I’m using the arcsine transform for this analysis.  I felt that this was appropriate 
because the rating scale has a strict maximum value and there was a good deal of compression at 
the top of the range for the highly grammatical sentences.  The arcsine transform expands the 
scale at the top so that rating differences near 7 will come out.

The items analysis uses a different data file which has the average rating value (averaged over 
subjects) for each test sentence.  Different test sentences were used for the grammaticality and 
type.token experimental factors, so the only repeated factor was familiarity. That is the same 
sentence was used (with different participants) as a novel or repeated sentence.

> LB2 <- read.delim("LukaBars05Exp4_items.txt")
> LB2$Item <- factor(LB2$Item)
> LB2 <- na.omit(LB2) # one sentence had to be omitted
> summary(aov(2/pi*asin(sqrt(RATING/7)) ~ GRAMMATICALITY * FAMILIARITY * 
REPETITION + Error(Item/FAMILIARITY),data=LB2))

Finally, for your appreciation and admiration, and so I’ll have something to refer back to in 
similar cases, the lines below were used to create figure 4.6.  To keep the “boxplot” statements 
relatively clean I used subset to select data for the plot statements.

> subset(LB1,FAMILIARITY=="New")->LB.New
> attach(LB.New)
> boxplot(2/pi*asin(sqrt(RATING/7))~ TYPE.TOKEN + GRAMMATICALITY, notch=T, 
ylab="Arcsin(rating)", boxwex=0.7)
> subset(LB1,FAMILIARITY=="Old")->LB.Old
> attach(LB.Old)
> boxplot(2/pi*asin(sqrt(RATING/7)) ~ TYPE.TOKEN + GRAMMATICALITY, notch=T, 
boxwex=0.5, col="lightgray",add=T)
> legend(2.7,0.99,legend=c("Repeated","Novel"),fill=c("gray","white"), 
title="Familiarity")

------------------------

Exercises.

1. In this chapter I said that the F statistic is a ratio of two estimates of variance.  What two 
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estimates?  i.e. what is the numerator in the F statistic, and what is the denominator, and why is a 
ratio a meaningful way to present and test the strength of a hypothesized effect?

2.  In Luka and Barsalou’s (2005) experiment 4, the three way interaction grammaticality by 
repetition type by familiarity was almost significant in the subjects analysis.  The likely cause of 
the three way interaction is visible in the data in figure 4.6.  What aspect of the results shown in 
figure 4.7 would lead you to suspect that a three way interaction might be present?

3. Suppose that you analyze the results of an experiment using both subjects analysis and items 
analysis and find that F1 is significant F2 is not.  What is going on?

4. The data file VCVdiscrim.txt is available on the book website. This “question” takes you step-
by-step through a repeated measures ANOVA of this data.  The interesting thing about this 
dataset is that it has two within subjects factors.

4.1. Use these commands to read this data into R and verify that it was read successfully.

vcv <- read.delim("VCVdiscrim.txt") 
vcv$Subject <- factor(vcv$Subject) 
summary(vcv)

4.2. vowel and pair2 are within-subjects factors.  How many different listeners participated in 
this experiment, and how many repeated measures were taken of each listener?  The table() 
command may help you answer these questions.

table(vcv$Subject)
table(vcv$vowel,vcv$pair2)

4.3. Now, do a univariate non-repeated measures analysis of variance.  Be very patient, it is 
calculating a very large covariance matrix and a regression formula with several hundred 
coefficients.  It didn’t die it is just working.  With a long calculation like this it is helpful to save 
the result - I put it in a linear model object that I named mylm.

mylm <- lm(medianRT~L.lang*pair2*vowel*Subject,data=vcv)

To see the coefficients you can type: summary(mylm)

But we are really most interested in the anova table: anova(mylm)

Before you go on to step 4, fill in the following table (looking at the anova table for mylm).  Keep 
in mind that L.lang is a between-subjects effect - I have two groups of listeners - and that both 
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vowel and pair2 are within-subjects effects.

What are the error terms for the following tests, and what is the F ratio assuming those error 
terms?

L.lang:pair2

pair2:vowel

L.lang:pair2:vowel

L.lang:vowel

vowel

pair2

L.lang

FMS errorMS treatmentname of error term

4.4. You can find the correct answers for this table by using the aov() command with the error 
term:  Subject/(pair2*vowel)

This calculates separate anova tables for the following error terms Subject, pair2:Subject, 
vowel:Subject, and pair2:vowel:Subject. Then aov() matches these to the correct effects, 
just like you did in the table :)

summary(aov(medianRT~L.lang*pair2*vowel+Error(Subject/(pair2*vowel)), 
data=vcv)) 

4.5. One of the effects found in this analysis is the vowel main effect.  It was also found that this 
effect was present for both groups of listeners (the vowel:L.lang interaction was not significant).

Look at the table of reaction times, and the (hacky) graph produced by the following commands.  
What would it look like for there to be an interaction in these data?  (hint: you can make up data 
and plot it using c() the way I made up the x axis for the plot).

myv <- aggregate(vcv$medianRT,list(v=vcv$vowel,lang=L.lang),mean)

myv

attach(myv)
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plot(c(1,2,3),x[lang=="AE"],type="b",ylim=c(600,750),xlim=c(0.5,3.5)) 

lines(c(1,2,3),x[lang=="D"],type="b")

5.  Try a repeated measures analysis of a different dataset. 

This example shows the analysis of an experiment with one within-subjects varianble and one 
between-subjects variable.  We want to know whether these two factors interact with each other.  
Amanda Boomershine asked Spanish speakers to judge the dialect of other Spanish speakers.  
The question was: “does this person speak local Spanish, or is he/she from another country?”  
The talkers and listeners were from Mexico and Puerto Rico.  The data are in “dialectID.txt”.
The dataset has four columns T.lang is the dialect of the talker (Puerto Rican or Mexican), L.lang 
is the dialect of the listener (PR or M), Listener is the ID number of the listener, and pcorrect is 
the proportion of correct responses.  We have two groups of listeners so the Listener variable is 
“nested” within the L.lang variable (subject #1 for example only appears in listener group M).  

Boomershine took repeated measures of the talker dialect variable.  That is, each listener provided 
judgements about both Puerto Rican and Mexican talkers.  So T.Lang is a “within-subjects” 
variable because we have data from each listener for both levels.  The L.lang variable is a 
“between-subjects” variable because for any  one person we only have one level on that variable - 
each listener is either from Puerto Rico or Mexico.  You should also apply the arcsine transform 
to the probability correct data.

2/pi*asin(sqrt(pcorrect))  # arcsine transform

dlect <- read.delim("dialectID.txt") # read the data
dlect$Listener <- factor(dlect$Listener) # treat listener as nominal
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