
1  Fundamentals of quantitative analysis 

In this chapter, I follow the outline of topics used in the first chapter of Kachigan, Multivariate 
Statistical Analysis, because I think that that is a very effective presentation of these core ideas.

Increasingly, linguists handle quantitative data in their research.  Phoneticians, sociolinguists, 
psycholinguists and computational linguists deal in numbers and have for decades.  Now also, 
phonologists, syntacticians and historical linguists are finding linguistic research to involve 
quantitative methods.  For example, Keller (2003) measures sentence acceptibility using a 
psychophysical technique called magnitude estimation.  Also, Boersma & Hayes (2001) employ 
probablistic reasoning in a constraint reranking algorithm for optimality theory.

Consequently, mastery of quantitative methods is increasingly becoming a vital component of 
linguistic training.  Yet, when I am asked to teach a course on quantitative methods I am not 
happy with the available textbooks. I hope that this book will deal adequately with the 
fundamental concepts that underlie common quantitative methods, and more than that will help 
students make the transition from the basics to real research problems with explicit examples of 
various common analysis techniques.

Of course, the strategies and methods of quantitative analysis are of primary importance, but in 
these chapters practical aspects of handling quantitative linguistic data will also be an important 
focus.  We will be concerned with how to use a particular statistical package (R) to discover 
patterns in quantitative data and to test linguistic hypotheses.  This theme is very practical and 
assumes that it is appropriate and useful to look at quantitative measures of language structure 
and usage. 

We will question this assumption. Salsburg (2001) talks about a “statistical revolution” in science 
in which the distributions of measurements are the objects of study.  We will, to some small 
extent, consider linguistics from this point of view.  Has linguistics participated in the statistical 
revolution? What would a quantitative linguistics be like?  Where is this approach taking the 
discipline?

Table 1.1 shows a set of phonetic measurements.  These VOT (voice onset time) measurements 
show the duration of aspiration in voiceless stops in Cherokee.  I made these measurements from 
recordings of one speaker, the Cherokee linguist Durbin Feeling, that were recorded in 1971 and 
2001.  The average VOT for voiceless stops /k/ and /t/ is shorter in the 2001 dataset.  But is the 
difference “significant”?  Or is the difference between VOT in 1971 and 2001 just an instance of 
random variation - a consequence of randomly selecting possible utterances in the two years that, 
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though not identical, come from the same underlying distribution of possible VOT values for this 
speaker?  I think that one of the main points to keep in mind about drawing conclusions from 
data is that it is all guessing.  Really.  But what we are trying to do with statistical summaries and 
hypothesis testing is to quantify just how reliable our guesses are.

Table 1.1. Voice Onset Time measurements of a single Cherokee speaker with a 30 
year gap between recordings.
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1.1  What we accomplish in quantitative analysis

Quantitative analysis takes some time and effort, so it is important to be clear about what you 
are trying to accomplish with it.  Note that “everybody seems to be doing it” is not on the list. 
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The four main goals of quantitative analysis are:

a) data reduction - summarize trends, capture the common aspects of a set of observations such 
as the average, standard deviation, and correlations among variables.

b) inference - generalize from a representative set of observations to a larger universe of possible 
observations using hypothesis tests such as the t test or analysis of variance.

c) discover relationships - find descriptive or causal patterns in data which may be described in 
multiple regression models or in factor analysis.

d) explore processes that may have a basis in probability - theoretical modeling, say in 
information theory, or in practical contexts such as probabalistic sentence parsing.

1.2 How to describe an observation

An observation can be obtained in some elaborate way, like visiting a monastery in Egypt to look 
at an ancient manuscript that hasn’t been read in 1000 years, or renting an MRI machine for an 
hour of brain imaging.  Or an observation can be obtained on the cheap - asking someone where 
the shoes are in the department store and noting whether the talker says the /r/’s in “fourth 
floor”.

Some observations can’t be quantified in any meaningful sense.  For example if that ancient text 
has an instance of a particular form and your main question is “how old is the form?” then your 
result is that the form is at least as old as the manuscript.  However, if you were to observe that 
the form was used 15 times in this manuscript, but only twice in a slightly older manuscript, then 
these frequency counts begin to take the shape of quantified linguistic observations that can be 
analyzed with the same quantitative methods used in science and engineering.  I take that to be a 
good thing - linguistics as a member of the scientific community. 

Each observation will have several descriptive properties - some will be qualitative and some will 
be quantitative - and descriptive properties (variables) come in one of four types:

Nominal - named properties, they have no meaningful order on a scale of any type.

Examples: What language is being observed?  what dialect?  Which word? What is the 
gender of the person being observed? Which variant was used: going or goin’?

Ordinal - orderable properties.  They aren’t observed on a measurable scale, but this kind of 
property is transitive so that if a is less than b and b is less than c then a is also less than c.
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Examples: Zipf’s rank frequency of words, rating scales (e.g. excellent, good, fair, poor)?

Interval - this is a property that is measured on a scale that does not have a true zero value.  In an 
interval scale, the magnitude of differences of adjacent observations can be determined (unlike the 
adjacent items on an ordinal scale), but because the zero value on the scale is arbitrary the scale 
cannot be interpreted in any absolute sense.

Examples: temperature (Fahrenheit or Centigrade scales), rating scales?, magnitude 
estimation judgements.

Ratio - this is a property that we measure on a scale that does have an absolute zero value.  This 
is called a ratio scale because ratios of these measurements are meaningful.  For instance, a vowel 
that is 100 msec long is twice as long as a 50 msec vowel, and 200 msec is twice 100 msec.  
Contrast this with temperature - 80 degrees Fahrenheit is not twice as hot as 40 degrees.

Examples: Acoustic measures - frequency, duration, frequency counts, reaction time.

1.3 Frequency distributions - a fundamental building block of quantitative analysis.

You must get this next bit, so pay attention.  Suppose we want to know how grammatical a 
sentence is.  We ask 36 people to score the sentence on a grammaticality scale so that a score of 1 
means that it sounds pretty ungrammatical, and 10 sounds perfectly OK.  Suppose that the 
ratings in Table 1.2 result from this exercise.

Interesting, but what are we supposed to learn from this?  Well, we’re going to use this set of 36 
numbers to construct a frequency distribution and define some of the terms used in discussing 
frequency distributions.

------------
R note.  I guess I should confess that I made up the “ratings” in Table 1.2.   I used a function in 
the R statistics package to draw 36 random integer observations from a normal distribution that 
had a mean value of 4.5 and a standard deviation of 2.  Here’s the command that I used to 
produce the made up data:

> round(rnorm(36,4.5,2))
If you issue this command in R you will almost certainly get a different set of ratings (that’s the 
nature of random selection), but the distribution of your scores should match the one in the 
example.

If you want to explore R as you read this book, an impulse that I highly encourage, look at the 
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appendix called “Getting started with R” to see how to download the R package (for free!) and to 
learn the basics of getting started.
------------------------

Table 1.2. Hypothetical data of grammaticality ratings for a group of 36 raters.
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634516

333415

332514

531413
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229611

528310
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72618

52567

12446

52355

62254

52163

92042
31951

ratingPerson #ratingPerson #

Look again at Table 1.2.  How many people gave the sentence a rating of “1”?  How many rated 
it a “2”?  When we answer these questions for all of the possible ratings we have the values that 
make up the frequency distribution of our sentence grammaticality ratings.  These data and some 
useful recodings of them are shown in Table 1.3.  

You’ll notice in Table 1.3 that we counted two instances of rating “1”, one instance of rating “2”, 
six instances of rating “3”, and so on.  Since there were 36 raters, each giving one score to the 
sentence, we have a total of 36 observations, so we can express the frequency counts in relative 
terms - as a percentage of the total number of observations.  Note that percentages (as the 
etymology of the word would suggest) are commonly expressed on a scale from 0 to 100, but 
you could express the same information as proportions ranging from 0 to 1.
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Table 1.3. Frequency distributions of the grammaticality rating data in Table 1.2.

1003610036total
100362.819
97.235008
97.2352.817
94.43413.956
80.62933.3125
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5.625.621

relative 
cumulative 
frequencies

cumulative 
frequencies

relative 
frequencies

frequenciesrating

The frequency distribution in Table 1.2 shows that most of the grammaticality scores are either 
“4” or “5”, and that though the scores span a wide range (from 1 to 9) the scores are generally 
clustered in the middle of the range.  This is as it should be because I selected the set of scores 
from a normal (bell-shaped) frequency distribution that centered on the average value of 4.5 - 
more about this later.

The set of numbers in Table 1.3 is more informative than the set in Table 1.2, but nothing beats a 
picture.  Figure 1 shows the frequencies from Table 1.3.  This figure highlights, for the visually 
inclined, the same points that we made regarding the numeric data in Table 1.3.

-------------
R note.  I produced Figure 1.1 using the plot() command in R.  I first typed in the frequency 
count data and the scores that correspond to these frequency counts, so that the vector data 
contains the counts and the vector score has the rating values.  Then I told plot() that we 
want a line plot with both (type = “b”) lines and points.
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data = c(2,1,6,8,12,5,1,0,1)
rating = c(1,2,3,4,5,6,7,8,9)
plot(rating,data,type = "b", main="Sentence rating frequency 

distribution", xlab = "Rating", ylab = "Frequency")
---------------

Figure 1.1.  The frequency distribution of the grammaticality rating data that was 
presented in Table 1.2. 

The property that we are seeking to study with the “grammaticality score” measure is probably a 
good deal more gradient than we permit by restricting our rater to a scale of integer numbers.  It 
may be that not all sentences that he/she would rate as a “5” are exactly equivalent to each other 
in the internal feeling of grammaticality that they evoke.  Who knows? But suppose that it is true 
that the internal grammaticality response that we measure with our rating scale is actually a 
continuous, gradient property.  We could get at this aspect by providing a more and more 
continuous type of rating scale - we’ll see more of this when we look at magnitude estimation 
later - but whatever scale we use, it will have some degree of granularity or quantization to it.  
This is true of all of the measurement scales that we could imagine using in any science.
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So, with a very fine-grained scale (say a grammaticality rating on a scale with many decimal 
points) it doesn’t make any sense to count the number of times that a particular measurement 
value appears in the data set because it is highly likely that no two ratings will be exactly the 
same. In this case, then, to describe the frequency distribution of our data we need to group the 
data into contiguous ranges of scores (bins) of similar values and then count the number of 
observations in each bin.  For example, if we permitted ratings on the 1 to 10 grammaticality scale 
to have many decimal places, the frequency distribution would look like the histogram in Figure 
1.2, where we have a count of 1 for each rating value in the data set. 

Figure 1.2.  A histogram of the frequency distribution of grammaticality ratings 
when rating values come on a continuous scale.

Figure 1.3 shows how we can group these same data into ranges (here ratings  between 0 and 1, 1 
and 2, and so on) and then count the number of rating values in each bin, just as we counted 
before, the number of ratings of a particular value.  So, instead of  counting the number of times 
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the rating “6” was given, now we are counting the number of ratings that are greater than or equal 
to 5 and less than 6.

Figure 1.3.  The same continuous rating data that was shown in figure 2, but now 
the frequency distribution is plotted with bins.

-----------------
R note.  The histograms in figures 1.2 and 1.3 are really easy to produce in R.  First, I produced a 
small set of 36 “observations” from normal distribution that has a mean rating of 4.5 and a 
standard deviation of ratings of 2.

x = rnorm(36, 4.5, 2)

Then to produce Figure 1.2, I used the hist() command and told it that I wanted lots and lots 
of vertical bars.  This large number gave me a separate bar for each of the 36 observations in the 

Quantitative methods in Linguistics Keith Johnson

10



“x” data set.

hist(x, breaks = 30000,xlim = c(0,10))

Then to produce Figure 1.3, I used the same command, this time permitting the command to 
choose a good bar width for my data.  Nice that the simpler command gives you the more 
sensible output.

hist(x,xlim = c(0,10))
---------------------------

OK.  This process of grouping measurements on a continuous scale is a useful, practical thing to 
do, but it helps us now make a serious point about theoretical frequency distributions.  This 
point is the FOUNDATION of all of the hypothesis testing statistics that we will be looking at 
later.  So, pay attention!

Let’s suppose that we could draw an infinite data set.  The larger our data set becomes the more 
detailed a representation of the frequency distribution we can get.  For example, suppose I keep 
collecting sentence grammaticality data for the same sentence, so that instead of ratings from 36 
people I had ratings from 10,000 people.  Now even with a histogram that has 1000 bars in it 
(Figure 1.4), we can see that ratings near 4.5 are more common than those at the edges of the 
rating scale.
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Figure 1.4. A frequency histogram with 1000 bars plotting frequency in 10,000 
observations.

Now if we keep adding observations up to infinity (just play along with me here) and keep 
reducing the size of the bars in the histogram of the frequency distribution we come to a point at 
which the intervals between bars is vanishingly small - i.e. we end up with a continuous curve.  
“Vanishingly small” should be a tip off that we have entered the realm of calculus.  Not to worry 
though, we’re not going too far. 
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Figure 1.5. The probability density distribution of 10,000 observations and the theoretical 
probability density distribution of a normal distribution with a mean of 4.5 and a standard 
deviation of 2.

----------------------
R note.  The cool thing about figure 1.5 is that we combine a histogram of the observed 
frequency distribution of a set of data with a theoretical normal distribution curve (see chapter 2 
regarding probability density).  It is useful to be able to do this.  Here are the commands I used:

x = rnorm(10000, 4.5, 2) # generate 10,000 data points
hist(x,breaks=100,freq=FALSE,xlim = c(0,10)) # plot them in a 

#histogram
# now plot the normal curve 

plot(function(x)dnorm(x, mean=4.5, sd=2), 0,10, add=TRUE)
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Of course, the excellent fit between the “observed” and the theoretical distributions is helped by 
the fact that the data being plotted here were generated by random selection (rnorm()) of 
observations from the theoretical normal distribution (dnorm()).
------------------------

The “normal distribution” is an especially useful theoretical function.  It seems intuitively 
reasonable to assume that in most cases there is some underlying property that we are trying to 
measure - like grammaticality, or typical duration, or amount of processing time - and that there 
is some source of random error that keeps us from getting an exact measurement of the underlying 
property.  If this is a good description of the source of variability in our measurements, then we 
can model this situation by assuming that the underlying property - the uncontaminated “true” 
value that we seek - is at the center of the frequency distribution that we observe in our 
measurements and that the spread of the distribution is caused by error - with bigger errors being 
less likely to occur than smaller errors.

These assumptions give us a bell-shaped frequency distribution which can be described by the 
normal curve, an extremely useful bell-shaped curve, which is an exponential function of the mean 
value (Greek letter µ “mew”) and the variance (Greek letter σ “sigma”).

€ 

xf = 1
σ 2π

−(
2x−µ) 22σe   The normal distribution.

One useful aspect of this definition of a theoretical distribution of data (besides that it derives 
from just two numbers, the mean value and a measure of how variable the data are) is that sum of 
the area under the curve fx is 1.  So, instead of thinking in terms of a “frequency” distribution, the 
normal curve gives us a way to calculate the probability of any set of observations by finding the 
area under any portion of the curve.  We’ll come back to this.

1.4 Types of distributions.

Data come in a variety of shapes of frequency distributions (Figure 1.6).  

For example, if every outcome is equally likely then the distribution is uniform.  This happens 
for example with the six sides of a dice - each one is (supposed to be) equally likely, so if you 
count up the number of rolls that come up “1” it should be on average 1 out of every 6 rolls.

In the normal - bell-shaped - distribution, measurements tend to congregate around a typical 
value and values become less and less likely as they deviate further from this central value.  As 
we saw in the section above, the normal curve is defined by two parameters - what the central 
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tendency is (µ) and how quickly probability goes down as you move away from the center of the 
distribution (σ).

If measurements are taken on a scale (like the 1-9 grammaticality rating scale discussed above) as 
we approach one end of the scale the frequency distribution is bound to be skewed because there 
is a limit beyond which the data values cannot go.  We most often run into skewed frequency 
distributions when dealing with percentage data and reaction time data (where negative reaction 
times are not meaningful).

The J-shaped distribution is a kind of skewed distribution with most observations coming from 
the very end of the measurement scale.  For example, if you count speech errors per utterance 
you might find that most utterances have a speech error count of 0. So in a histogram, the number 
of utterances with a low error count will e very high and will decrease dramatically as the number 
of errors per utterance increases.
 
A bimodal distribution is like a combination of two normal distributions - there are two peaks.  If 
you find that your data fall in a bimodal distribution you might consider whether the data 
actually represent two separate populations of measurements.  For example, voice fundamental 
frequency (the acoustic property most closely related to the pitch of a person’s voice) falls into a 
bimodal distribution when you pool measurements from men and women because men tend to 
have lower pitch than women.

If you ask a number of people how strongly they supported the US invasion of Iraq you would 
get a very polarized distribution of results.  In this U-shaped distribution most people would be 
either strongly in favor or strongly opposed with not too many in the middle.
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Figure 1.6. Types of probability distributions.

--------------------------
R note.  Figure 1.6 not only illustrates different types of probability distributions - it also shows 
how to combine several graphs into one figure in R.  The command par() lets you set many 
different graphics parameters.  I set the graph window to expect two rows that each have three 
graphs by entering this command: 

> par(mfcol=c(2,3))

Then I entered the six plot commands in the following order:
> plot(function(x)dunif(x,min=-3,max=3),-3,3,main="Uniform") 

Quantitative methods in Linguistics Keith Johnson

16



> plot(function(x)dnorm(x),-3,3, main="Normal") 
> plot(function(x)df(x,3,100),0,4,main="Skewed right") 
> plot(function(x)df(x,1,10)/3,0.2,3, main="J-shaped") 
> plot(function(x)(dnorm(x, mean=3, sd=1)+dnorm(x,mean=-3, 
sd=1))/2,-6,6, main="Bimodal") 
> plot(function(x)-dnorm(x),-3,3,main="U-shaped") 

And, voilá.  The figure is done.  When you know that you will want to repeat the same, or a very 
similar sequence of commands for a new data set, you can save a list of commands like this as a 
custom command, and then just enter your own “plot my data my way” command.
-------------------------------

1.5 Is normal data, well, normal?

The normal distribution is a useful way to describe data.  It embodies some reasonable 
assumptions about how we end up with variability in our data sets and gives us some 
mathematical tools to use in two important goals of statistical analysis.  In data reduction, we can 
describe the whole frequency distribution with just two numbers - the mean and the standard 
deviation (formal definitions of these are just ahead.)  Also, the normal distribution provides a 
basis for drawing inferences about the accuracy of our statistical estimates.

So, it is a good idea to know whether or not the frequency distribution of your data is shaped like 
the normal distribution.  I suggested earlier that the data we deal with often falls in an 
approximately normal distribution, but as discussed in section 4, there are some common types 
of data (like percentages and rating values) that are not normally distributed.

We’re going to do two things here.  First, we’ll explore a couple of ways to determine whether 
your data are normally distributed, and second we’ll look at a couple of transformations that you 
can use to MAKE data more normal (this may sound fishy, but transformations are legal!).

Consider again the Cherokee that we used to start this chapter.  We have two sets of data, thus, 
two distributions. So, when we plot the frequency distribution as a histogram and then compare 
that observed distribution with the best-fitting normal curve we can see that both the 2001 and 
the 1971 data sets are fairly similar to the normal curve.  The 2001 set (Figure 1.7) has a pretty 
normal looking shape, but there are a couple of measurements at nearly 200 ms. that hurt the fit. 
When we remove these two, the fit between the theoretical normal curve and the frequency 
distribtion of our data is quite good. The 1971 set (Figure 1.8) also looks roughly like a normally 
distributed data set, though notice that there were no observations between 80 and 100 ms in this 
(quite small) data set. Though, if these data came from a normal curve we would have expected 
several observations in this range.

Quantitative methods in Linguistics Keith Johnson

17



Figure 1.7. The probability density distribution of the Cherokee 2001 Voice Onset 
Time data.  (a) The best-fitting normal curve for all of the data points is shown. 
(b) The best-fitting normal curve when the two largest VOT values are removed 
from the data set.
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Figure 1.8. The probability density distribution of the Cherokee 1971 Voice 
Onset Time data.  The best-fitting normal curve is also shown.

-------------------
R note.  In producing Figures 1.7 and 1.8, I used the c() function to type in the two vectors 
vot01 for the 2001 data and vot71 for the 1971 data. Just ahead I’ll introduce methods for 
reading data from computer files into R - you don’t usually have to type in your data.  Then I 
used the mean() and sd() functions to calculate the means and standard deviations for these 
data sets.  Finally, I used the hist() and plot() commands to draw the actual and theoretical 
frequency distributions in the figures.

> vot01 = c(84, 82, 72,193, 129, 77, 72, 81, 45, 74, 102, 77, 187, 
79, 86, 59, 74, 63, 75, 70, 106, 54, 49, 56, 58, 97) 
> vot71 =c(67, 127, 79, 150, 53, 65, 75, 109, 109, 126, 129, 119, 
104, 153, 124, 107, 181, 166) 
> mean(vot01)
 [1] 84.65385 
> sd(vot01) 

[1] 36.08761
> hist(vot01,freq=FALSE) 
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> plot(function(x)dnorm(x, mean=84.654, sd=36.088), 40, 200, 
add=TRUE)

You might also be interested to see how to take the mean and standard deviation with outliers 
removed.  I decided that the two VOT measurements in vot01 that are greater than 180 ms are 
outliers and so calcuated the mean and standard deviation for only those numbers in the vector 
that are less than 180 using the following statements. 

> mean(vot01[vot01<180])
[1] 75.875
> sd(vot01[vot01<180])
[1] 19.218

Read vot01[vot01<180] as “the numbers in vot01 that are less than 180”.  When we have 
data sets that are composed of several linked vectors we can extract subsets of data using similar 
syntax.  

Note though that I have just told you how to “remove outliers” as if it is perfectly fine to remove 
weird data.  It is not!  You should use ALL of the data you collect unless you have good 
independent reasons for not doing so.  For example, data values can be removed if you know that 
there has been some measurement error that results in the weird value, or if you know that the 
person providing the data was different from the other participants in the study in some way 
that bears on the aims of the study (e.g. by virtue of having fallen asleep during a perception 
experiment, or by not being a native speaker of the language under study), or the token is 
different in some crucial way (e.g. by virtue of being spoken in error or with a disfluency).  
Because such variation on the part of the people we study is bound to happen, it is acceptable to 
trim the 5% most extreme data values from a large and noisy database where manual inspection of 
the entire database is not practical.
----------------------

These frequency distribution graphs give an indication of whether our data is distributed on a 
normal curve, but we are essentially waving our hands at the graphs and saying “looks pretty 
normal to me”.   I guess you shouldn’t underestimate how important it is to look at the data, but 
it would be good to be able to measure just how “normally distributed” these data are. 

To do this we measure the degree of fit between the data and the normal curve with a 
quantile/quantile plot and a correlation between the actual quantile scores and the quantile scores 
that are predicted by the normal curve.  The NIST “Handbook of Statistical Methods” has this to 
say about q-q plots.
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The quantile-quantile (q-q) plot is a graphical technique  for determining if two 
data sets come from populations with  a common distribution.

A q-q plot is a plot of the quantiles of the first data  set against the quantiles of 
the second data set.  By a quantile, we mean the fraction (or percent) of points  
below the given value. That is, the 0.3 (or 30%) quantile  is the point at which 
30% percent of the data fall below and 70% fall above that value.

A 45-degree reference line is also plotted. If the two  sets come from a population 
with the same distribution, the  points should fall approximately along this 
reference line. The  greater the departure from this reference line, the greater the  
evidence for the conclusion that the two data sets have come from populations 
with different distributions.

The advantages of the q-q plot are:
1.   The sample sizes do not need to be equal.
2.   Many distributional aspects can be simultaneously  tested. For 

example, shifts in location, shifts in  scale, changes in symmetry, and the presence 
of  outliers can all be detected from this plot.  For example, if the two data sets 
come from populations  whose distributions differ only by a shift in location,  the 
points should lie along a straight line that is  displaced either up or down from the 
45-degree reference line.

The q-q plot is similar to a  probability plot. For a  probability plot, the quantiles 
for one of the data samples  are replaced with the quantiles of a theoretical  
distribution.

Further regarding the “probabilty plot” the Handbook has this to say:

The probability plot  (Chambers 1983)  is a graphical technique for assessing  
whether or not a data set follows a given distribution  such as the normal or 
Weibull.

The data are plotted against a theoretical distribution in  such a way that the 
points should form approximately a  straight line. Departures from this straight 
line indicate  departures from the specified distribution.

As you can see in Figure 1.9 the Cherokee 1971 data are just as you would expect them to be if 

Quantitative methods in Linguistics Keith Johnson

21



they came from a normal distribution.  In fact, the data points are almost all on the line showing 
perfect identity between the expected “Theoretical quantiles” and the actual “Sample Quantiles”.  
This good fit between expected and actual quantiles is reflected in a correlation coefficient of 
0.987 - almost a perfect 1 (you’ll find more about correlation in the phonetics chapter, chapter 
3).
 

Figure 1.9. The quantiles-quantiles probability plot comparing the Cherokee 1971 
data with the normal distribution.

Contrast this excellent fit with the one between the normal distribution and the 2001 data (Figure 
1.10).  Here we see that most of the data points in the 2001 data set are just where we would 
expect them to be in a normal distribution.  However the two (possibly three) largest VOT values 
are much larger than expected. Consequently, the correlation between expected and observed 
quantiles for this data set (r = 0.87) is lower than what we found for the 1971 data. It may be 
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that this distribution would look more normal if we collected more data points, or we might find 
that we have a bimodal distribution such that most data comes from a peak around 70 msec, but 
there are some VOT’s (perhaps in a different speaking style?) that center around a much longer 
(190 msec) VOT value.  We will eventually be testing the hypothesis that this speaker’s VOT 
was shorter in 2001 than it was in 1971 and the outlying data values work against this 
hypothesis.  But, even though these two very long VOT values are inconvenient, there is no valid 
reason to remove them from the data set (they are not errors of measurement, or speech 
dysfluencies), so we will keep them.

Figure 1.10. The quantiles-quantiles probability plot comparing the Cherokee 
2001 data with the normal distribution.

----------------------
R note.  Making a quantile-quantile plot in R is easy using the qqnorm() and qqline() 
functions.  The function qqnorm() takes a vector of values (the data set) as input and draws a 
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q-q plot of the data.  I also captured the values used to plot the x-axis of the graph into the vector 
vot71.qq for later use in the correlation function cor().  qqline() adds the 45-degree 
reference line to the plot, and cor() measures how well the points fit on the line (0 for no fit at 
all and 1 for a perfect fit).

vot71.qq = qqnorm(vot71)$x  # make the quantile/quantile plot
vot01.qq = qqnorm(vot01)$x  # and keep the x axis of the plot

qqline(vot71) # put the line on the plot
cor(vot71,vot71.qq) # compute the correlation
[1] 0.9868212
> cor(vot01,vot01.qq) 
[1] 0.8700187
-----------------------

Now, let’s look at a non-normal distribution.  We have some rating data that are measured as 
proportions on a scale from 0 to 1, and in one particular condition several of the participants gave 
ratings that were very close to the bottom of the scale - near zero.  So, when we plot these data in 
a quantile-quantile probability plot (Figure 1.11), you can see that, as the sample quantile values 
approach zero, the data points line up in a horizontal line.  Even with this non-normal 
distribution, though, the correlation between the expected normal distribution and the observed 
data points is pretty high (r=0.92).
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Figure 1.11.  The Normal quantile-quantile plot for a set of data that is not normal 
because the score values (which are probabilities) cannot be less than zero.

One standard method that is used to make a data set fall on a more normal distribution is to 
transform the data from the original measurement scale and put it on a scale that is stretched or 
compressed in helpful ways. For example, when the data are proportions it is usually 
recommended that they be transformed with the arcsine transform.  This takes the original data x 
and converts it to the transformed data y using the following formula:

€ 

y =
2
π
arcsin( x ) Arcsine transformation

This produces the transformation shown in Figure 1.12, in which values that are near 0 or 1 on 
the x-axis are spread out on the y-axis.
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Figure 1.12. The arcsine transformation.  Values of x that are near 0 or 1 are 
stretched out on the arcsine axis.  Note that the transformed variable spans a range 
from 0 to π.

-----------------------------------
R note.  The command for plotting the arcsine transformation in Figure 1.12 uses the plot 
function method.  

> plot(function(x)2/pi*asin(sqrt(x)),0,1)

And as in this plot command, the command to transform the original data set (the vector “data”) 
also uses the functions asin() and sqrt() to implement the arcsine and square root operations to 
create the new vector of values “data.arcsin”.  Read this as “data.arcsin is produced by taking the 
arcsine of the square root of data and multiplying it by 2 divided by π”.
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> x.arcsin = 2/pi*asin(sqrt(x))
----------------------------------

The correlation between the expected values from a normal frequency distribution and the actual 
data values on the arcsine transformed measurement scale (r = 0.96) is higher than it was for the 
untransformed data.  The better fit of the normal distribution to the observed data values is also 
apparent in the normal q-q plot of the transformed data (Figure 13).  This indicates that the 
arcsine transform did what we needed it to do - it made our data more normally distributed so 
that we can use statistics that assume that the data fall in a normal distribution.

Figure 1.13.  The Normal quantile-quantile plot for the arcsine transform of the 
data shown in Figure 1.11.

1.6 Measures of Central Tendency

Figure 1.14 shows three measures of the the central tendency, or mid-point, of a skewed 
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distribution of data. 

Figure 1.14.  The mode, median, and mean of a skewed distribution.

The mode of the distribution is the most frequently occurring value in the distribution - the tip of 
the frequency distribution.  For the skewed distribution in Figure 1.14, the mode is at about 0.6.

Imagine ordering a data set from the smallest value to the largest.  The median of the distribution 
is the value in the middle of the ordered list.  There are as many data points greater than the 
median value then are less than the median.  This is sometimes also called the “center of gravity”.

The mean value, or the arithmetic average, is the least squares estimate of central tendency.  First, 
how to calculate the mean - sum the data values and then divide by the number of values in the 
data set.  
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€ 

x =
ix

i= 0

n
∑

n
Mean.

Second, what does it mean to be the least squares estimate of central tendency?  This means that 
if we take the difference between the mean and each value in our data set, square these differences 
and add them up, we will have a smaller value than if we were to do the same thing with the 
median or any other estimate of the “mid-point” of the data set.

€ 

d2 = (xii= 0

n∑ − x )2 Sum of the squared deviations (also called SS).

So, in the data set illustrated in Figure 1.14, the value of d2, the sum of the squared deviations 
from the mean, is 4570, but if we calculate the sum of squared deviations from the median value 
we get a d2 value of 4794.  This property, being the least squares estimate of central tendency, is 
a very useful one for the derivation of statistical tests of significance.

I should also note that I used a skewed  distribution to show how the mode, median, and mean 
differ from each other because with a normal distribution these three measures of central 
tendency give the same value.

----------------------------
R-note. The skewed distribution in Figure 1.14 comes from the “F” family of probability density 
distributions and is drawn in R using the df() density of “F” function. 

plot(function(x)df(x,5,100),0,4,main="Measures of central 
tendency") 

The vertical lines were drawn with the lines() command.  I used the df() function again to 
decide how tall to draw the lines and I used the mean() and median() commands with a data 
set drawn from this distribution to determine where on the x-axis to draw the mean and median 
lines.

lines(x = c(0.6,0.6), y = c(0,df(0.6,5,100))) 
skew.data <- rf(10000,5,100)
lines(

x = c(mean(skew.data),mean(skew.data)), 
y = c(0,df(mean(skew.data),5,100))) 

lines(
x = c(median(skew.data),median(skew.data)), 
y = c(0,df(median(skew.data),5,100)))
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And finally, the text labels were added with the text() graphics command.  I tried a couple of 
different x,y locations for each label before deciding on these.

text(1,0.75,labels="mode") 
text(1.3,0.67,labels="median") 
text(1.35,0.6,labels="mean") 

Oh, and you might be interested in how I got the squared deviation d2 values above.  This 
illustrates how neatly you can do math in R.  To square the difference between the mean and each 
data value in the vector I put the expression for the difference in () and then ^2 to square the 
differences. These then go inside the sum() function to add them up over the entire data vector.  
Your results will differ slightly because skew.data is a random sample from the F distribution and 
your random sample will be different from mine.

> sum((mean(skew.data)-skew.data)^2) 
[1] 4570.231 
> sum((median(skew.data)-skew.data)^2) 
[1] 4794.141 
-----------------------------

We should probably also say something about the weighted mean.  Suppose you asked someone 
to rate the grammaticality of a set of sentences, but you also let the person rate their ratings, to 
say that they feel very sure or not very sure at all about the rating given.  These confidence 
values could be used as weights (wi) in calculating the central tendency of the ratings, so that 
ratings given with high confidence influence the measure more than ratings given with a sense of 
confusion.

€ 

x = iwixi= 0

n
∑

wii= 0

n
∑

Weighted mean.

1.7 Measures of Dispersion

In addition to wanting to know the central point or most typical value in the data set we usually 
want to also know how closely clusted the data are around this central point - how dispersed are 
the data values away from the center of the distribution?  The minimum possible amount of 
dispersion is the case in which every measurement has the same value.  In this case there is no 
variation.  I’m not sure what the maximum of variation would be.
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A simple, but not very useful measure of dispersion is the range of the data values.  This is the 
difference between the maximum and minimum values in the data set.  The disadvantage of the 
range as a statistic are that (1) it is based only two observations, so it may be sensitive to how 
lucky we were with the tails of the sampling distribution, and (2) range is undefined for most 
theoretical distributions like the normal distribution which extend to infinity.

I don’t know of any measures of dispersion that use the median - the remaining measures 
discussed here refer to dispersion around the mean.

The average deviation, or the mean absolute deviation measures the absolute difference between 
the mean and each observation.  We take the absolute difference because if we took raw 
differences we would be adding positive and negative values for a sum of about zero no matter 
how dispersed the data are.  This measure of deviation is not as well defined as is the standard 
deviation, partly because the mean is the least squares estimator of central tendency - so a 
measure of deviation that uses squared deviations is more comparable to the mean.

Variance is like the mean absolute deviation except that we square the deviations before averaging 
them.  We have definitions for variance of a population and for a sample drawn from a larger 
population.

€ 

σ 2 = (xi −µ)2 /N∑ Population variance.

€ 

s2 = (xi − x )2 / (n −1)∑ Sample variance.

Notice that this formula uses the Sum of Squares (SS, also called d2 above, the sum of squared 
deviations from the mean) and by dividing by N or n-1, we get the Mean Squares (MS, also called 
s2 here).  We will see these names (SS, and MS) when we discuss the ANOVA later.  

We take (n-1) as the denominator in the definition of s2, sample variance, because 

€ 

x  is not µ.  
The sample mean 

€ 

x  is only an estimate of µ, derived from the xi, so in trying to measure variance 
we have to keep in mind that our estimate of the central tendency 

€ 

x  is probably wrong to a 
certain extent. We take this into account by giving up a “degree of freedom” in the sample 
formula. Degrees of freedom is a measure of how much precision an estimate of variation has. Of 
course this is primarily related to the number of observations that serve as the basis for the 
estimate, but as a general rule the degrees of freedom decrease as we estimate more parameters 
with the same data set - here estimating both the mean and the variance with the set of 
observations xi.
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The variance is the average squared deviation - the units are squared - to get back to the original 
unit of measure we take the square root of the variance.

€ 

σ = σ 2 Population standard deviation.

€ 

s = s2 Sample standard deviation.

This is the same as the value known as the RMS (root mean square), a measure of deviation used 
in acoustic phonetics (among other disciplines).

€ 

s =
(xi − x ∑ )2

(n −1)
RMS = sample standard deviation

1.8 Standard deviation of the normal distribution

If you consider the formula for the normal distribution again, you will note that it can be defined 
for any mean value µ, and any standard deviation σ.  However, I mentioned that this distribution 
is used to calculate probabilities, where the total area under the curve is equal to 1, so the area 
under any portion of the curve is equal to some proportion of 1.  This is the case when the mean 
of the bell-shaped distribution is 0 and the standard deviation is 1. This is sometimes abbreviated 
as N(0,1) - a normal curve with mean 0 and standard deviation 1.

€ 

xf = 1
2π

e−x 2 2  The normal distribution - N(0,1)

I would like to make two points about this. 

First, because the area under the normal distribution curve is 1, we can state the probability (area 
under the curve) of finding a value larger than any value of x, smaller than any value of x, or 
between any two values of x.

Second, because we can often approximate our data with a normal distribution we can state such 
probabilities for our data given the mean and standard deviation.

Let’s take an example of this from some rating data (Figure 1.15).  Listeners were asked to rate 
how similar two sounds were on a scale from 1 to 5 and their average ratings for a particular 
condition  in the experiment (how different do [d] and [] sound) will be analyzed here.  Though 
the histogram doesn’t look like a smooth normal curve (there are only 18 data points in the set), 
the Q-Q plot does reveal that the individual data points do follow the normal curve pretty well 
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(r=0.97).

Figure 1.15.  Histogram and Q-Q plot of some sample rating data. 

Now, how likely is it, given these data and the normal curve that they fall on, that an average 
rating of less than 1.5 would be given?  The area to the left of 1.5 under the normal curve in the 
histogram plot is 0.134, so we can say that 13% of the distribution covers rating values less than 
1.5, so that if we are drawing more average rating values from our population - ratings given by 
speakers of Latin American Spanish - we could predict that 13% of them would have average 
ratings less than 1.5.

---------------------------
R note.  Figure 1.15 comes from the following commands (assuming a vector of data).  This is all 
pretty familiar by now.

par(mfrow = c(1,2)) 
hist(data, freq=F) 
plot(function(x)dnorm(x,mean=mean(data),sd=sd(data)),1,4,add=T) 
qqnorm(data) 
qqline(data)

I calculated the probability of a rating value less than 1.5 by calling the pnorm() function.
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pnorm(1.5,mean=mean(data),sd=sd(data)) 
[1] 0.1340552

Pnorm() also gives the probability of a rating value greater than 3.5 but this time specifing that 
we want the probability of the upper tail of the distribution (values greater than 3.5).

pnorm(3.5,mean=mean(data),sd=sd(data),lower.tail=F) 
[1] 0.05107909
------------------------------

How does this work?  We can relate the frequency distribution of our data to the normal 
distribution because we know the mean and standard deviation of both.  The key is to be able to 
express any value in a data set in terms of its distance in standard deviations from the mean.  

For example, in these rating data the mean is 2.3 and the standard deviation is 0.7.  Therefore, a 
rating of 3 is one standard deviation above the mean, and a rating of 1.6 is one standard deviation 
below the mean.  This way of expressing data values, in standard deviation units, puts our data 
on the normal distribution - where the mean is 0 and the standard deviation is 1.  

I’m talking about standardizing a data set - converting the data values into z-scores, where each 
data value is replaced by the distance between it and the sample mean where the distance is 
measured as the number of standard deviations between the data value and the mean.  As a result 
of “standardizing” the data, z-scores always have a mean of 0 and a standard deviation of 1, just 
like the normal distribution.  Here’s the formula for standardizing your data:

€ 

zi =
xi − x 

s
Z-score standardization.

With standardized values we can easily make probability statements.  For example, as illustrated 
in Figure 1.16, the area under the normal curve between -1.96 and 1.96 is 0.95.  This means that 
95% of the values we draw from a normal distribution will be between 1.96 standard deviations 
below the mean and 1.96 standard deviations above the mean.
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Figure 1.16.  95% of the area under the normal distribution lies between -1.96s and 
1.96s. 97.5% is above -1.96s and 97.5% is less than 1.96s.

Exercises

1. Open a dictionary of any language to a random page.  Count the number of words that have 1, 
2, 3, 4, etc. syllables.  What kind of distribution do you get?

2. Count the number of instances of the different parts of speech - noun, verb, adjective, function 
word.  What kind of variable is part of speech and why can’t you draw a reasonable distribution 
of part of speech?

3. Calculate the average number of syllables per word on this page.  You can do this as a weighted 
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mean, using the count as the weight for each syllable length.

4. What is the standard deviation of the average length in syllables?  How do you calculate this?  
Hint: the raw data have one observation per word, while the count data have several words 
summarized for each syllable length.

5. Are these data an accurate representation of word length in this language?  How could you get 
a more accurate estimate?

6. Using your word length data from Question 1 above, produce a quantile-quantile plot of the 
data.  Are these data approximately normally distributed?  What is the correlation between the 
normal curve quantiles (the theoretical quantiles) and the observed data?

7. Make a histogram of the data. Do these data seem to follow a normal distribution?  Hint: 
Plotting the syllable numbers on the x axis and the word counts on the y axis (like figure 1.1) may 
be a good way to see the frequency distribution.

8. Assuming a normal distribution, what is the probability that a word will have more than 3 
syllables?  How does this relate to the observed percentage of words that have more than 3 
syllables in your data?
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