Datasets:
Tasks:
Text Generation
Languages:
English
File size: 41,209 Bytes
7a045c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
<html>
<head>
<title>LISP Tutorial Lecture 3: Data Abstraction</title>
</head>
<body bgcolor=ffffff>
<h1>LISP Tutorial Lecture 3: Data Abstraction</h1>
<h2>Binary Trees</h2>
<p>Suppose we want to create a new kind
of <em>recursive data type</em>, our familiar binary trees.
The first thing we have to do is to define the data type in terms of
its <em>constructors</em>, <em>selectors</em> and <em>recognizers</em>.
In the case of binary trees, we have the following:
<ol>
<li><em>Constructors</em>: We have two kinds of binary trees, <em>leaves</em>
and <em>nodes</em>. Accordingly, we need a constructor for each
kind:
<ul>
<li><tt>(make-bin-tree-leaf <em>E</em>)</tt>: A leaf is a composite
object with one component, the <em>element</em> <em>E</em>.
<li><tt>(make-bin-tree-node <em>E</em>
<em>B1</em> <em>B2</em>)</tt>: A node consists of three components,
an element <em>E</em>, a <em>left subtree</em> <em>B1</em> and
a <em>right subtree</em> <em>B2</em>. Each of <em>B1</em>
and <em>B2</em> is a binary tree.
</ul>
Notice that the definition of binary tree is inherently recursive
(as in the case of nodes).
Larger binary trees can be composed from smaller ones.
<li><em>Selectors</em>: We need to define a selector for each
component of each kind of binary tree.
<ul>
<li><tt>(bin-tree-leaf-element <em>L</em>)</tt>: Retrieve the element
of a leaf <em>L</em>.
<li><tt>(bin-tree-node-element <em>N</em>)</tt>: Retrieve the element
of a node <em>N</em>.
<li><tt>(bin-tree-node-left <em>N</em>)</tt>: Retrieve the
left subtree of a node <em>N</em>.
<li><tt>(bin-tree-node-right <em>N</em>)</tt>: Retrieve the right
subtree of a node <em>N</em>.
</ul>
<li><em>Recognizers</em>: We define one recognizer for each kind
of binary tree.
<ul>
<li><tt>(bin-tree-leaf-p <em>B</em>)</tt>: Test if a given binary tree
<em>B</em> is a leaf.
<li><tt>(bin-tree-node-p <em>B</em>)</tt>: Test if a given binary tree
<em>B</em> is a node.
</ul>
</ol>
<p>Notice that we have not written a line of code yet, and still we
are able to write down the function signature of all the constructors,
selectors and recognizers. The process is more or less mechanical:
<ol>
<li>Define a constructor for each variant of the recursive data type.
The parameters for a constructor defines the components of
a composite object.
<li>For each parameter of each constructor, define a selector to
retrieve the corresponding component.
<li>For each constructor, define a corresponding recognizer.
</ol>
<p>The next question is how we are to <em>represent</em> a binary tree
as a LISP object. Of course, a list is the first thing that comes to
our mind:
<ul>
<li>We represent an leaf with element <em>E</em> by a singleton list
containing <em>E</em> (i.e. <tt>(list <em>E</em>)</tt>).
<li>A node with element <em>E</em>, left subtree <em>B1</em>
and right subtree <em>B2</em> is represented as a list containing
the three components (i.e.
<tt>(list <em>E</em> <em>B1</em> <em>B2</em>)</tt>).
</ul>
Fixing the representation, we can thus implement the recursive
data type functions:
<pre>
;;
;; Binary Trees
;;
;;
;; Constructors for binary trees
;;
(defun make-bin-tree-leaf (E)
"Create a leaf."
(list E))
(defun make-bin-tree-node (E B1 B2)
"Create a node with element K, left subtree B1 and right subtree B2."
(list E B1 B2))
;;
;; Selectors for binary trees
;;
(defun bin-tree-leaf-element (L)
"Retrieve the element of a leaf L."
(first L))
(defun bin-tree-node-element (N)
"Retrieve the element of a node N."
(first N))
(defun bin-tree-node-left (N)
"Retrieve the left subtree of a node N."
(second N))
(defun bin-tree-node-right (N)
"Retrieve the right subtree of a node N."
(third N))
;;
;; Recognizers for binary trees
;;
(defun bin-tree-leaf-p (B)
"Test if binary tree B is a leaf."
(and (listp B) (= (list-length B) 1)))
(defun bin-tree-node-p (B)
"Test if binary tree B is a node."
(and (listp B) (= (list-length B) 3)))
</pre>
<p>The representation scheme works out like the following:
<pre>
USER(5): (make-bin-tree-node '*
(make-bin-tree-node '+
(make-bin-tree-leaf 2)
(make-bin-tree-leaf 3))
(make-bin-tree-node '-
(make-bin-tree-leaf 7)
(make-bin-tree-leaf 8)))
(* (+ (2) (3)) (- (7) (8)))
</pre>
The expression above is a binary tree node with element <tt>*</tt> and
two subtrees. The left subtree is itself a binary tree node with
<tt>+</tt> as its element and leaves as its subtress. The right
subtree is also a binary tree node with <tt>-</tt> as its element
and leaves as its subtrees. All the leaves are decorated by
numeric components.
<pre>
*
/ \
/ \
/ \
+ -
/ \ / \
2 3 7 8
</pre>
<h2>Searching Binary Trees</h2>
<p>As discussed in previous tutorials, having recursive data structures
defined in the way we did streamlines the process of formulating
structural recursions. We review this concept in the following examples.
<p>Suppose we treat binary trees as containers. An
expression <em>E</em> is a member of a binary tree <em>B</em> if:
<ol>
<li><em>B</em> is a leaf and its element is <em>E</em>.
<li><em>B</em> is a node and either its element is <em>E</em> or
<em>E</em> is a member of one of its subtrees.
</ol>
For example, the definition asserts that the members of
<tt>(* (+ (2) (3)) (- (7) (8)))</tt> are <tt>*</tt>, <tt>+</tt>,
<tt>2</tt>, <tt>3</tt>, <tt>-</tt>, <tt>7</tt> and <tt>8</tt>.
Such a definition can be directly implemented by our recursive data
type functions:
<pre>
(defun bin-tree-member-p (B E)
"Test if E is an element in binary tree B."
(if (bin-tree-leaf-p B)
(equal E (bin-tree-leaf-element B))
(or (equal E (bin-tree-node-element B))
(bin-tree-member-p (bin-tree-node-left B) E)
(bin-tree-member-p (bin-tree-node-right B) E))))
</pre>
The function can be made more readable by using the <tt>let</tt> form:
<pre>
(defun bin-tree-member-p (B E)
"Test if E is an element in binary tree B."
(if (bin-tree-leaf-p B)
(equal E (bin-tree-leaf-element B))
(let
((elmt (bin-tree-node-element B))
(left (bin-tree-node-left B))
(right (bin-tree-node-right B)))
(or (equal E elmt)
(bin-tree-member-p left E)
(bin-tree-member-p right E)))))
</pre>
<p>Tracing the execution of <tt>bin-tree-member-p</tt>, we get:
<pre>
USER(14): (trace bin-tree-member-p)
(BIN-TREE-MEMBER-P)
USER(15): (bin-tree-member-p '(+ (* (2) (3)) (- (7) (8))) 7)
0: (BIN-TREE-MEMBER-P (+ (* (2) (3)) (- (7) (8))) 7)
1: (BIN-TREE-MEMBER-P (* (2) (3)) 7)
2: (BIN-TREE-MEMBER-P (2) 7)
2: returned NIL
2: (BIN-TREE-MEMBER-P (3) 7)
2: returned NIL
1: returned NIL
1: (BIN-TREE-MEMBER-P (- (7) (8)) 7)
2: (BIN-TREE-MEMBER-P (7) 7)
2: returned T
1: returned T
0: returned T
T
</pre>
<p><hr><b>Exercise:</b>
Let <em>size(B)</em> be the number of members in a binary tree <em>B</em>.
Give a recursive definition of <em>size(B)</em>, and then implement a
LISP function <tt>(bin-tree-size <em>B</em>)</tt> that
returns <em>size(B)</em>.
<hr>
<h2>Traversing Binary Trees</h2>
<p>
Let us write a function
that will <em>reverse</em> a tree in the sense that the left
and right subtrees of every node are swapped:
<pre>
(defun binary-tree-reverse (B)
"Reverse binary tree B."
(if (bin-tree-leaf-p B)
B
(let
((elmt (bin-tree-node-element B))
(left (bin-tree-node-left B))
(right (bin-tree-node-right B)))
(make-bin-tree-node elmt
(binary-tree-reverse right)
(binary-tree-reverse left)))))
</pre>
<p>The correctness of the above implementation can be articulated
as follows. Given a binary tree <em>B</em> and an object <em>E</em>,
either the binary tree is a leaf or it is a node:
<ul>
<li><em>Case 1:</em> <em>B</em> is a leaf.<br>
Then the reversal of <em>B</em> is simply <em>B</em> itself.
<li><em>Case 2:</em> <em>B</em> is a node.<br>
Then <em>B</em> has three components, namely, an element <tt>elmt</tt>,
a left subtree <tt>left</tt> and a right subtree <tt>right</tt>.
The reversal of <em>B</em> is a node with element <tt>elmt</tt>,
left subtree the reversal of <tt>right</tt>, and right subtree
the reversal of <tt>left</tt>.
</ul>
<p>The following shows us how the recursion unfolds:
<pre>
USER(21): (trace bin-tree-reverse)
(BIN-TREE-REVERSE)
USER(22): (bin-tree-reverse '(* (+ (2) (3)) (- (7) (8))))
0: (BIN-TREE-REVERSE (* (+ (2) (3)) (- (7) (8))))
1: (BIN-TREE-REVERSE (- (7) (8)))
2: (BIN-TREE-REVERSE (8))
2: returned (8)
2: (BIN-TREE-REVERSE (7))
2: returned (7)
1: returned (- (8) (7))
1: (BIN-TREE-REVERSE (+ (2) (3)))
2: (BIN-TREE-REVERSE (3))
2: returned (3)
2: (BIN-TREE-REVERSE (2))
2: returned (2)
1: returned (+ (3) (2))
0: returned (* (- (8) (7)) (+ (3) (2)))
(* (- (8) (7)) (+ (3) (2)))
</pre>
The resulting expression represents the following tree:
<pre>
*
/ \
/ \
/ \
- +
/ \ / \
8 7 3 2
</pre>
<p>Let us implement a function that will extract the members of a given binary
tree, and put them into a list in preorder.
<pre>
(defun bin-tree-preorder (B)
"Create a list containing keys of B in preorder."
(if (bin-tree-leaf-p B)
(list (bin-tree-leaf-element B))
(let
((elmt (bin-tree-node-element B))
(left (bin-tree-node-left B))
(right (bin-tree-node-right B)))
(cons elmt
(append (bin-tree-preorder left)
(bin-tree-preorder right))))))
</pre>
Tracing the execution of the function, we obtain the following:
<pre>
USER(13): (trace bin-tree-preorder)
(BIN-TREE-PREORDER)
USER(14): (bin-tree-preorder '(* (+ (2) (3)) (- (7) (8))))
0: (BIN-TREE-PREORDER (* (+ (2) (3)) (- (7) (8))))
1: (BIN-TREE-PREORDER (+ (2) (3)))
2: (BIN-TREE-PREORDER (2))
2: returned (2)
2: (BIN-TREE-PREORDER (3))
2: returned (3)
1: returned (+ 2 3)
1: (BIN-TREE-PREORDER (- (7) (8)))
2: (BIN-TREE-PREORDER (7))
2: returned (7)
2: (BIN-TREE-PREORDER (8))
2: returned (8)
1: returned (- 7 8)
0: returned (* + 2 3 - 7 8)
(* + 2 3 - 7 8)
</pre>
<p>As we have discussed before, the <tt>append</tt> call in the code above
is a source of inefficiency that can be obtimized away:
<pre>
(defun fast-bin-tree-preorder (B)
"A tail-recursive version of bin-tree-preorder."
(preorder-aux B nil))
(defun preorder-aux (B A)
"Append A to the end of the list containing elements of B in preorder."
(if (bin-tree-leaf-p B)
(cons (bin-tree-leaf-element B) A)
(let
((elmt (bin-tree-node-element B))
(left (bin-tree-node-left B))
(right (bin-tree-node-right B)))
(cons elmt
(preorder-aux left
(preorder-aux right A))))))
</pre>
An execution trace of the implementation is the following:
<pre>
USER(15): (trace fast-bin-tree-preorder preorder-aux)
(PREORDER-AUX FAST-BIN-TREE-PREORDER)
USER(16): (fast-bin-tree-preorder '(* (+ (2) (3)) (- (7) (8))))
0: (FAST-BIN-TREE-PREORDER (* (+ (2) (3)) (- (7) (8))))
1: (PREORDER-AUX (* (+ (2) (3)) (- (7) (8))) NIL)
2: (PREORDER-AUX (- (7) (8)) NIL)
3: (PREORDER-AUX (8) NIL)
3: returned (8)
3: (PREORDER-AUX (7) (8))
3: returned (7 8)
2: returned (- 7 8)
2: (PREORDER-AUX (+ (2) (3)) (- 7 8))
3: (PREORDER-AUX (3) (- 7 8))
3: returned (3 - 7 8)
3: (PREORDER-AUX (2) (3 - 7 8))
3: returned (2 3 - 7 8)
2: returned (+ 2 3 - 7 8)
1: returned (* + 2 3 - 7 8)
0: returned (* + 2 3 - 7 8)
(* + 2 3 - 7 8)
</pre>
<p><b>Exercise</b>: Implement a function that will create a list
containing members of a given binary tree in postorder. Implement
also a tail-recursive version of the same function.
<p><b>Exercise</b>: Repeat the last exercise with inorder.
<h2>Abstract Data Types</h2>
<p><em>Abstract data types</em> are blackboxes. They are defined
in terms of their external interfaces, and not their implementation.
For example, a <em>set</em> abstraction offers the following
operations:
<ul>
<li><tt>(make-empty-set)</tt> creates an empty set.
<li><tt>(set-insert <em>S</em> <em>E</em>)</tt>
returns a set containing all members
of set <em>S</em> plus an additional member <em>E</em>.
<li><tt>(set-remove <em>S</em> <em>E</em>)</tt>
returns a set containing all members of set <em>S</em>
except for <em>E</em>.
<li><tt>(set-member-p <em>S</em> <em>E</em>)</tt>
returns true if <em>E</em> is a member of set <em>S</em>.
<li><tt>(set-empty-p <em>S</em>)</tt> returns true if set <em>S</em>
is empty.
</ul>
<p>To implement an abstract data type, we need to decide on
a representation. Let us represent a set by a list with
no repeated members.
<pre>
(defun make-empty-set ()
"Creates an empty set."
nil)
(defun set-insert (S E)
"Return a set containing all the members of set S plus the element E."
(adjoin E S :test #'equal))
(defun set-remove (S E)
"Return a set containing all the members of set S except for element E."
(remove E S :test #'equal))
(defun set-member-p (S E)
"Return non-NIL if set S contains element E."
(member E S :test #'equal))
(defun set-empty-p (S)
"Return true if set S is empty."
(null S))
</pre>
<p><hr><b>Exercise:</b> Look up the definition of <tt>adjoin</tt>,
<tt>remove</tt> and <tt>member</tt> from CLTL2. In particular,
find out how the <tt>:test</tt> keyword is used to specify
the equality test function to be used by the three functions.
What will happen if we omit the <tt>:test</tt> keyword and
the subsequent <tt>#'equal</tt> when invoking the three
functions?
<hr>
<p>Notice that we have implemented an abstract data type (sets)
using a more fundamental recursive data structure (lists) with additional
computational constraints (no repetition) imposed by the interface
functions.
<h2>Binary Search Trees</h2>
<p>Another way of implementing the same set abstraction is to use
the more efficient <em>binary search tree (BST)</em>.
Binary search trees are basically binary trees with the following
additional computational constraints:
<ul>
<li>All the members in the left subtree of a tree node
is no greater than the element of the node.
<li>All the members in the right subtree of a tree node
is greater than the element of the node.
<li>All the leaf members are distinct.
</ul>
Again, we are implementing an abstract data type (sets) by a more
fundamental recursive data structure (binary trees) with additional
computational constraints. In particular, we use the leaves of
a binary tree to store the member of a set, and the tree nodes
for providing indexing information that improves search performance.
for example, a BST representing the set {1 2 3 4} would look like:
<pre>
2
/ \
/ \
/ \
1 3
/ \ / \
1 2 3 4
</pre>
<p> An
empty BST is represented by <tt>NIL</tt>, while a nonempty BST is
represented by a binary tree.
We begin with the constructor and recognizer for empty BST.
<pre>
(defun make-empty-BST ()
"Create an empty BST."
nil)
(defun BST-empty-p (B)
"Check if BST B is empty."
(null B))
</pre>
<p>Given the additional computational constraints, membership test
can be implemented as follows:
<pre>
(defun BST-member-p (B E)
"Check if E is a member of BST B."
(if (BST-empty-p B)
nil
(BST-nonempty-member-p B E)))
(defun BST-nonempty-member-p (B E)
"Check if E is a member of nonempty BST B."
(if (bin-tree-leaf-p B)
(= E (bin-tree-leaf-element B))
(if (<= E (bin-tree-node-element B))
(BST-nonempty-member-p (bin-tree-node-left B) E)
(BST-nonempty-member-p (bin-tree-node-right B) E))))
</pre>
Notice that we handle the degenerate case of searching an empty BST
separately, and apply the well-known recursive search algorithm
only on nonempty BST.
<pre>
USER(16): (trace BST-member-p BST-nonempty-member-p)
(BST-NONEMPTY-MEMBER-P BST-MEMBER-P)
USER(17): (BST-member-p '(2 (1 (1) (2)) (3 (3) (4))) 3)
0: (BST-MEMBER-P (2 (1 (1) (2)) (3 (3) (4))) 3)
1: (BST-NONEMPTY-MEMBER-P (2 (1 (1) (2)) (3 (3) (4))) 3)
2: (BST-NONEMPTY-MEMBER-P (3 (3) (4)) 3)
3: (BST-NONEMPTY-MEMBER-P (3) 3)
3: returned T
2: returned T
1: returned T
0: returned T
T
</pre>
<p>Insertion is handled by the following family of functions:
<pre>
(defun BST-insert (B E)
"Insert E into BST B."
(if (BST-empty-p B)
(make-bin-tree-leaf E)
(BST-nonempty-insert B E)))
(defun BST-nonempty-insert (B E)
"Insert E into nonempty BST B."
(if (bin-tree-leaf-p B)
(BST-leaf-insert B E)
(let ((elmt (bin-tree-node-element B))
(left (bin-tree-node-left B))
(right (bin-tree-node-right B)))
(if (<= E (bin-tree-node-element B))
(make-bin-tree-node elmt
(BST-nonempty-insert (bin-tree-node-left B) E)
right)
(make-bin-tree-node elmt
left
(BST-nonempty-insert (bin-tree-node-right B) E))))))
(defun BST-leaf-insert (L E)
"Insert element E to a BST with only one leaf."
(let ((elmt (bin-tree-leaf-element L)))
(if (= E elmt)
L
(if (< E elmt)
(make-bin-tree-node E
(make-bin-tree-leaf E)
(make-bin-tree-leaf elmt))
(make-bin-tree-node elmt
(make-bin-tree-leaf elmt)
(make-bin-tree-leaf E))))))
</pre>
As before, recursive insertion to nonempty BST is handled
outside of the general entry point of BST insertion. Traversing
down the index nodes, the recursive algorithm eventually arrives
at a leaf. In case the element is not already in the tree, the
leaf is turned into a node with leaf subtrees holding the inserted
element and the element of the original leaf. For example, if
we insert 2.5 into the tree represented by
<tt>(2 (1 (1) (2)) (3 (3) (4)))</tt>,
the effect is the following:
<pre>
2 2
/ \ / \
/ \ / \
/ \ ==> / \
1 3 1 3
/ \ / \ / \ / \
1 2 3 4 1 2 2.5 4
/ \
2.5 3
</pre>
A trace of the insertion operation is given below:
<pre>
USER(22): (trace BST-insert BST-nonempty-insert BST-leaf-insert)
(BST-LEAF-INSERT BST-NONEMPTY-INSERT BST-INSERT)
USER(23): (BST-insert '(2 (1 (1) (2)) (3 (3) (4))) 2.5)
0: (BST-INSERT (2 (1 (1) (2)) (3 (3) (4))) 2.5)
1: (BST-NONEMPTY-INSERT (2 (1 (1) (2)) (3 (3) (4))) 2.5)
2: (BST-NONEMPTY-INSERT (3 (3) (4)) 2.5)
3: (BST-NONEMPTY-INSERT (3) 2.5)
4: (BST-LEAF-INSERT (3) 2.5)
4: returned (2.5 (2.5) (3))
3: returned (2.5 (2.5) (3))
2: returned (3 (2.5 (2.5) (3)) (4))
1: returned (2 (1 (1) (2)) (3 (2.5 (2.5) (3)) (4)))
0: returned (2 (1 (1) (2)) (3 (2.5 (2.5) (3)) (4)))
(2 (1 (1) (2)) (3 (2.5 (2.5) (3)) (4)))
</pre>
<p>Removal of elements is handled by the following family of functions:
<pre>
(defun BST-remove (B E)
"Remove E from BST B."
(if (BST-empty-p B)
B
(if (bin-tree-leaf-p B)
(BST-leaf-remove B E)
(BST-node-remove B E))))
(defun BST-leaf-remove (L E)
"Remove E from BST leaf L."
(if (= E (bin-tree-leaf-element L))
(make-empty-BST)
L))
(defun BST-node-remove (N E)
"Remove E from BST node N."
(let
((elmt (bin-tree-node-element N))
(left (bin-tree-node-left N))
(right (bin-tree-node-right N)))
(if (<= E elmt)
(if (bin-tree-leaf-p left)
(if (= E (bin-tree-leaf-element left))
right
N)
(make-bin-tree-node elmt (BST-node-remove left E) right))
(if (bin-tree-leaf-p right)
(if (= E (bin-tree-leaf-element right))
left
N)
(make-bin-tree-node elmt left (BST-node-remove right E))))))
</pre>
This time, removal from empty BST's and BST's with a single leaf are
both degenerate cases. The recursive removal algorithm deals with
BST nodes. Traversing down the index nodes, the recursive algorithm
searches for the parent node of the leaf to be removed. In case it is
found, the sibling of the leaf to be removed replaces its parent
node. For example, the effect of removing 2 from the BST represented
by <tt>(2 (1 (1) (2)) (3 (3) (4)))</tt> is depicted as follows:
<pre>
2 2
/ \ / \
/ \ / \
/ \ ==> / \
1 3 1 4
/ \ / \ / \
1 2 3 4 1 2
</pre>
A trace of the deletion operation is given below:
<pre>
USER(4): (trace BST-remove BST-node-remove)
(BST-NODE-REMOVE BST-REMOVE)
USER(5): (BST-remove '(2 (1 (1) (2)) (3 (3) (4))) 3)
0: (BST-REMOVE (2 (1 (1) (2)) (3 (3) (4))) 3)
1: (BST-NODE-REMOVE (2 (1 (1) (2)) (3 (3) (4))) 3)
2: (BST-NODE-REMOVE (3 (3) (4)) 3)
2: returned (4)
1: returned (2 (1 (1) (2)) (4))
0: returned (2 (1 (1) (2)) (4))
(2 (1 (1) (2)) (4))
</pre>
<p><hr><b>Exercise:</b> A set can be implemented as a <em>sorted list</em>,
which is a list storing distinct members in ascending order. Implement
the sorted list abstraction.
<hr>
<h2>Polynomials</h2>
<p>We demonstrate how one can perform symbolic computation using
LISP. To begin with, we define a new recursive data type for
<em>polynomials</em>, which is defined recursively as follows:
<ul>
<li>If <em>num</em> is a number, then
<tt>(make-constant <em>num</em>)</tt> is a polynomial;
<li>If <em>sym</em> is a symbol, then <tt>(make-variable <em>sym</em>)</tt>
is a polynomial;
<li>If <em>poly1</em> and <em>poly2</em> are polynomials, then
the following are also polynomials:
<ul>
<li><tt>(make-sum <em>poly1</em> <em>poly2</em>)</tt>
<li><tt>(make-product <em>poly1</em> <em>poly2</em>)</tt>
</ul>
<li>If <em>poly</em> is a polynomial and <em>num</em> is a number,
then <tt>(make-power <em>poly</em> <em>num</em>)</tt> is a polynomial.
</ul>
One can represent polynomials in the most standard way:
<pre>
;;
;; Constructors for polynomials
;;
(defun make-constant (num)
num)
(defun make-variable (sym)
sym)
(defun make-sum (poly1 poly2)
(list '+ poly1 poly2))
(defun make-product (poly1 poly2)
(list '* poly1 poly2))
(defun make-power (poly num)
(list '** poly num))
</pre>
For example, <tt>(make-power (make-sum (make-variable 'x) (make-constant 1)) 2)</tt> is represented by the LISP form <tt>(** (+ x 1) 2)</tt>, which
denotes the polynomail <em>(x + 1)<sup>2</sup></em> in our usual
notation.
<p>We then define a recognizer for each constructor:
<pre>
;;
;; Recognizers for polynomials
;;
(defun constant-p (poly)
(numberp poly))
(defun variable-p (poly)
(symbolp poly))
(defun sum-p (poly)
(and (listp poly) (eq (first poly) '+)))
(defun product-p (poly)
(and (listp poly) (eq (first poly) '*)))
(defun power-p (poly)
(and (listp poly) (eq (first poly) '**)))
</pre>
<p>We then need to define selectors for the composite polynomials.
We define a selector for each component of each composite
constructor.
<pre>
;;
;; Selectors for polynomials
;;
(defun constant-numeric (const)
const)
(defun variable-symbol (var)
var)
(defun sum-arg1 (sum)
(second sum))
(defun sum-arg2 (sum)
(third sum))
(defun product-arg1 (prod)
(second prod))
(defun product-arg2 (prod)
(third prod))
(defun power-base (pow)
(second pow))
(defun power-exponent (pow)
(third pow))
</pre>
One may ask why we define so many trivial looking functions for
carrying out the same task (<tt>sum-arg1</tt> and <tt>product-arg1</tt>
have exactly the same implementation). The reason is that we
may end up changing the representation in the future, and there is
no guarantee that sums and products will be represented similarly
in the future. Also, programs written like this tends to be
self-commenting.
<p>Now that we have a completely defined polynomial data type, let us
do something interesting with it. Let us define a function that
carries out symbolic differentiation. In particular, we want a function
<tt>(d <em>poly</em> <em>x</em>)</tt> which returns the derivative
of polynomial <em>poly</em> with respect to variable <em>x</em>.
Let us review our first-year differential calculus:
<ul>
<li>The derivative <em>(dC / dx)</em> of a constant <em>C</em>
is zero.
<li>The derivative <em>(dy/dx)</em> of a variable <em>y</em>
is 1 if the <em>x = y</em>. Otherwise, we leave
the derivative unevaluated. We represent unevaluated
derivatives using the following functions
<pre>
;;
;; Unevaluated derivative
;;
(defun make-derivative (poly x)
(list 'd poly x))
(defun derivative-p (poly x)
(and (listp poly) (eq (first poly) 'd)))
</pre>
<li>The derivative <em>(d(F+G)/dx)</em>
of a sum <em>(F+G)</em> is <em>(dF/dx) + (dG/dx)</em>.
<li>The derivative <em>(d(F*G)/dx)</em> of a product <em>(F*G)</em>
is <em>F*(dG/dx) + G*(dF/dx)</em>.
<li>The derivative <em>(d(F<sup>N</sup>)/dx)</tt>
of a power <em>F<sup>N</sup></em> is
<em>N * F<sup>N-1</sup> * (dF/dx)</em>.
</ul>
<p>The above calculus can be encoded in LISP as follows:
<pre>
;;
;; Differentiation function
;;
(defun d (poly x)
(cond
((constant-p poly) 0)
((variable-p poly)
(if (equal poly x)
1
(make-derivative poly x)))
((sum-p poly)
(make-sum (d (sum-arg1 poly) x)
(d (sum-arg2 poly) x)))
((product-p poly)
(make-sum (make-product (product-arg1 poly)
(d (product-arg2 poly) x))
(make-product (product-arg2 poly)
(d (product-arg1 poly) x))))
((power-p poly)
(make-product (make-product (power-exponent poly)
(make-power (power-base poly)
(1- (power-exponent poly))))
(d (power-base poly) x)))))
</pre>
<p>Test driving the differentiation function we get:
<pre>
USER(11): (d '(+ x y) 'x)
(+ 1 (D Y X))
USER(12): (d '(* (+ x 1) (+ x 1)) 'x)
(+ (* (+ X 1) (+ 1 0)) (* (+ X 1) (+ 1 0)))
USER(13): (d '(** (+ x 1) 2) 'x)
(* (* 2 (** (+ X 1) 1)) (+ 1 0))
</pre>
<p>The result is correct but very clumsy. We would like to
simplify the result a bit using the following rewriting rules:
<ul>
<li><em>E + 0 = E</em>
<li><em>0 + E = E</em>
<li><em>E * 0 = 0</em>
<li><em>0 * E = 0</em>
<li><em>E * 1 = E</em>
<li><em>1 * E = E</em>
<li><em>E<sup>0</sup> = 1</em>
<li><em>E<sup>1</sup> = E</em>
</ul>
<p>This can be done by defining a simplification framework, in which
we can implement such rules:
<pre>
;;
;; Simplification function
;;
(defun simplify (poly)
"Simplify polynomial POLY."
(cond
((constant-p poly) poly)
((variable-p poly) poly)
((sum-p poly)
(let ((arg1 (simplify (sum-arg1 poly)))
(arg2 (simplify (sum-arg2 poly))))
(make-simplified-sum arg1 arg2)))
((product-p poly)
(let ((arg1 (simplify (product-arg1 poly)))
(arg2 (simplify (product-arg2 poly))))
(make-simplified-product arg1 arg2)))
((power-p poly)
(let ((base (simplify (power-base poly)))
(exponent (simplify (power-exponent poly))))
(make-simplified-power base exponent)))
((derivative-p poly) poly)))
</pre>
The <tt>simplify</tt> function decomposes a composite polynomial into
its components, apply simplification recursively to the
components, and then invoke the type-specific simplification
rules (i.e. <tt>make-simplified-sum</tt>, <tt>make-simplified-product</tt>,
<tt>make-simplified-power</tt>) based on the type of the polynomial
being processed.
<p>The simplification rules are encoded in LISP as follows:
<pre>
(defun make-simplified-sum (arg1 arg2)
"Given simplified polynomials ARG1 and ARG2, construct a simplified sum of ARG1 and ARG2."
(cond
((and (constant-p arg1) (zerop arg1)) arg2)
((and (constant-p arg2) (zerop arg2)) arg1)
(t (make-sum arg1 arg2))))
(defun make-simplified-product (arg1 arg2)
"Given simplified polynomials ARG1 and ARG2, construct a simplified product of ARG1 and ARG2."
(cond
((and (constant-p arg1) (zerop arg1)) (make-constant 0))
((and (constant-p arg2) (zerop arg2)) (make-constant 0))
((and (constant-p arg1) (= arg1 1)) arg2)
((and (constant-p arg2) (= arg2 1)) arg1)
(t (make-product arg1 arg2))))
(defun make-simplified-power (base exponent)
"Given simplified polynomials BASE and EXPONENT, construct a simplified power with base BASE and exponent EXPONENT."
(cond
((and (constant-p exponent) (= exponent 1)) base)
((and (constant-p exponent) (zerop exponent)) (make-constant 1))
(t (make-power base exponent))))
</pre>
<p>Let us see how all these pay off:
<pre>
USER(14): (simplify (d '(* (+ x 1) (+ x 1)) 'x))
(+ (+ X 1) (+ X 1))
USER(15): (simplify (d '(** (+ x 1) 2) 'x))
(* 2 (+ X 1))
</pre>
Comparing to the original results we saw before, this is a lot
more reasonable.
<p><hr><b>Exercise:</b> Extend the symbolic polynomial framework
in the following ways:
<ul>
<li>Define a new type of polynomial --- <em>difference</em>.
If <em>poly1</em> and <em>poly2</em> are polynomials, then
<tt>(make-difference <em>poly1</em> <em>poly2</em>)</tt>
is also a polynomial. Implement the constructor, recognizer
and selectors for this type of polynomial.
<li>The derivative <em>(d(F-G)/dx)</em> of a difference <em>(F-G)</em>
is <em>(dF/dx) - (dG/dx)</em>. Extend the differentiation function
to incorporate this.
<li>Implement the following simplification rule:
<ul>
<li><em>E - 0 = E</em>
</ul>
</ul>
<hr>
<p><hr><b>Exercise:</b> Extend the symbolic polynomial framework
in the following ways:
<ul>
<li>Define a new type of polynomial --- <em>negation</em>.
If <em>poly1</em> is a polynomial, then <tt>(make-negation
<em>poly</em>)</tt> is also a polynomial. Implement the
constructor, recognizer and selectors for this type of polynomial.
<li>The derivative <em>(d(-F)/dx)</em> of a negation <em>-F</em>
is <em>-(dF/dx)</em>. Extend the differentiation function
to incorporate this.
<li>Implement the following simplification rules:
<ul>
<li><em>-0 = 0</em>
<li><em>-(-E) = E</em>
</ul>
</ul>
<hr>
<p><hr><b>Exercise:</b> The simplification rules we have seen so
far share a common feature: the right hand sides do not involve
any new polynomial constructor. For example, <em>-(-E)</em> is
simply <em>E</em>. However, some of the most useful simplification
rules are those involving constructors on the right hand sides:
<ul>
<li><em>0 - E = -E</em>
<li><em>E<sub>1</sub> + (-E<sub>2</sub>) = E<sub>1</sub> - E<sub>2</sub></em>
<li><em>(-E<sub>1</sub>) + E<sub>2</sub> = E<sub>2</sub> - E<sub>1</sub></em>
<li><em>E<sub>1</sub> - (-E<sub>2</sub>) = E<sub>1</sub> + E<sub>2</sub></em>
<li><em>E * (-1) = -E</em>
<li><em>(-1) * E = -E</em>
</ul>
Within the type-specific simplification functions,
if we naively apply the regular constructors to build the expressions
on the right hand sides, then we run into the risk of constructing
polynomials that are not fully simplified. For example, <em>-x</em>
and <em>-1</em> are both fully simplified, but if we now construct their
product <em>(-1) * (-x)</em>, the last simplification rule above
says that we can rewrite the product into <em>-(-x)</em>, which needs
further simplification. One naive solution is to blindly apply full
simplification to the newly constructed polynomials, but this is
obviously an overkill. What then is an efficient and yet correct
implementation of the
above simplification rules?
<hr>
<p><hr><b>Exercise:</b> If all the components of a composite polynomial
are constants, then we can actually perform further simplification.
For example, <tt>(+ 1 1)</tt> should be simplified to <tt>2</tt>.
Extend the simplification framework to incorporate this.
<hr>
<h2>Tower of Hanoi</h2>
<p>The Tower of Hanoi problem is a classical toy problem in
Artificial Intelligence: There are <em>N</em> disks
<em>D<sub>1</sub></em>, <em>D<sub>2</sub></em>, ..., <em>D<sub>n</sub></em>,
of graduated sizes and three pegs 1, 2, and 3. Initially all the disks
are stacked on peg 1, with <em>D<sub>1</sub></em>, the smallest,
on top and <em>D<sub>n</sub></em>, the largest, at the bottom. The
problem is to transfer the stack to peg 3 given that only one disk
can be moved at a time and that no disk may be placed on top of a
smaller one. [Pearl 1984]
<p>We call peg 1 the "from" peg, peg 3 the "to" peg. Peg 2 is
a actually a buffer to facilitate movement of disks, and we call
it an "auxiliary" peg. We can move <em>N</em> disks from the
"from" peg to the "to" peg using the following recursive scheme.
<ol>
<li>Ignoring the largest disk at the "from" peg, treat the remaining disks
as a Tower of Hanoi problem with <em>N-1</em> disks. Recursively
move the top <em>N-1</em> disks from the "from" peg to the
"auxiliary" peg, using the "to" peg as a buffer.
<li>Now that the <em>N-1</em> smaller disks are in the "auxiliary" peg,
we move the largest disk to the "to" peg.
<li>Ignoring the largest disk again, treat the remaining disks
as a Tower of Hanoi problem with <em>N-1</em> disks.
Recursively move the <em>N-1</em> disks from the "auxiliary"
peg to the "to" peg, using the "from" peg as a buffer.
</ol>
<p>To code this solution in LISP, we need to define some data structure.
First, we represent a disk by a number, so that <em>D<sub>i</sub></em>
is represented by <em>i</em>.
Second, we represent a stack of disks by a <em>tower</em>, which is
nothing but a list of numbers, with the first element representing
the top disk. We define the usual constructors and selectors for
the tower data type.
<pre>
;;
;; A tower is a list of numbers
;;
(defun make-empty-tower ()
"Create tower with no disk."
nil)
(defun tower-push (tower disk)
"Create tower by stacking DISK on top of TOWER."
(cons disk tower))
(defun tower-top (tower)
"Get the top disk of TOWER."
(first tower))
(defun tower-pop (tower)
"Remove the top disk of TOWER."
(rest tower))
</pre>
<p>Third, we define the <em>hanoi</em> data type to represent
a Tower of Hanoi configuration. In particular, a hanoi configuration
is a list of three towers. The elementary constructors and selectors
are given below:
<pre>
;;
;; Hanoi configuration
;;
(defun make-hanoi (from-tower aux-tower to-tower)
"Create a Hanoi configuration from three towers."
(list from-tower aux-tower to-tower))
(defun hanoi-tower (hanoi i)
"Select the I'th tower of a Hanoi construction."
(nth (1- i) hanoi))
</pre>
<p>Working with towers within a Hanoi configuration is tedious.
We therefore define some shortcut to capture recurring operations:
<pre>
;;
;; Utilities
;;
(defun hanoi-tower-update (hanoi i tower)
"Replace the I'th tower in the HANOI configuration by tower TOWER."
(cond
((= i 1) (make-hanoi tower (second hanoi) (third hanoi)))
((= i 2) (make-hanoi (first hanoi) tower (third hanoi)))
((= i 3) (make-hanoi (first hanoi) (second hanoi) tower))))
(defun hanoi-tower-top (hanoi i)
"Return the top disk of the I'th tower in the HANOI configuration."
(tower-top (hanoi-tower hanoi i)))
(defun hanoi-tower-pop (hanoi i)
"Pop the top disk of the I'th tower in the HANOI configuration."
(hanoi-tower-update hanoi i (tower-pop (hanoi-tower hanoi i))))
(defun hanoi-tower-push (hanoi i disk)
"Push DISK into the I'th tower of the HANOI configuration."
(hanoi-tower-update hanoi i (tower-push (hanoi-tower hanoi i) disk)))
</pre>
<p>The fundamental operator we can perform on a Hanoi configuration
is to move a top disk from one peg to another:
<pre>
;;
;; Operator: move top disk from one tower to another
;;
(defun move-disk (from to hanoi)
"Move the top disk from peg FROM to peg TO in configuration HANOI."
(let
((disk (hanoi-tower-top hanoi from))
(intermediate-hanoi (hanoi-tower-pop hanoi from)))
(hanoi-tower-push intermediate-hanoi to disk)))
</pre>
<p>We are now ready to capture the logic of our recursive solution
into the following code:
<pre>
;;
;; Subgoal: moving a tower from one peg to another
;;
(defun move-tower (N from aux to hanoi)
"In the HANOI configuration, move the top N disks from peg FROM to peg TO using peg AUX as an auxiliary peg."
(if (= N 1)
(move-disk from to hanoi)
(move-tower (- N 1) aux from to
(move-disk from to
(move-tower (- N 1) from to aux hanoi)))))
</pre>
<p>We use the driver function <tt>solve-hanoi</tt> to start up the recursion:
<pre>
;;
;; Driver function
;;
(defun solve-hanoi (N)
"Solve the Tower of Hanoi problem."
(move-tower N 1 2 3 (make-hanoi (make-complete-tower N) nil nil)))
(defun make-complete-tower (N)
"Create a tower of N disks."
(make-complete-tower-aux N (make-empty-tower)))
(defun make-complete-tower-aux (N A)
"Push a complete tower of N disks on top of tower A."
(if (zerop N)
A
(make-complete-tower-aux (1- N) (tower-push A N))))
</pre>
<p>To solve a Tower of Hanoi problem with 3 disks, we call
<tt>(solve-hanoi 3)</tt>:
<pre>
USER(50): (solve-hanoi 3)
(NIL NIL (1 2 3))
</pre>
All we get back is the final configuration, which is not as
interesting as knowing the sequence of moves taken by the
algorithm. So we trace usage of the <tt>move-disk</tt>
operator:
<pre>
USER(51): (trace move-disk)
(MOVE-DISK)
USER(52): (solve-hanoi 3)
0: (MOVE-DISK 1 3 ((1 2 3) NIL NIL))
0: returned ((2 3) NIL (1))
0: (MOVE-DISK 1 2 ((2 3) NIL (1)))
0: returned ((3) (2) (1))
0: (MOVE-DISK 3 2 ((3) (2) (1)))
0: returned ((3) (1 2) NIL)
0: (MOVE-DISK 1 3 ((3) (1 2) NIL))
0: returned (NIL (1 2) (3))
0: (MOVE-DISK 2 1 (NIL (1 2) (3)))
0: returned ((1) (2) (3))
0: (MOVE-DISK 2 3 ((1) (2) (3)))
0: returned ((1) NIL (2 3))
0: (MOVE-DISK 1 3 ((1) NIL (2 3)))
0: returned (NIL NIL (1 2 3))
(NIL NIL (1 2 3))
</pre>
From the trace we can actually read off the sequence of
operator applications necessary for one to achieve the solution
configuration.
This is good, but not good enough. We want to know why each move is
being taken. So we trace also the high-level subgoals:
<pre>
USER(53): (trace move-tower)
(MOVE-TOWER)
USER(54): (solve-hanoi 3)
0: (MOVE-TOWER 3 1 2 3 ((1 2 3) NIL NIL))
1: (MOVE-TOWER 2 1 3 2 ((1 2 3) NIL NIL))
2: (MOVE-TOWER 1 1 2 3 ((1 2 3) NIL NIL))
3: (MOVE-DISK 1 3 ((1 2 3) NIL NIL))
3: returned ((2 3) NIL (1))
2: returned ((2 3) NIL (1))
2: (MOVE-DISK 1 2 ((2 3) NIL (1)))
2: returned ((3) (2) (1))
2: (MOVE-TOWER 1 3 1 2 ((3) (2) (1)))
3: (MOVE-DISK 3 2 ((3) (2) (1)))
3: returned ((3) (1 2) NIL)
2: returned ((3) (1 2) NIL)
1: returned ((3) (1 2) NIL)
1: (MOVE-DISK 1 3 ((3) (1 2) NIL))
1: returned (NIL (1 2) (3))
1: (MOVE-TOWER 2 2 1 3 (NIL (1 2) (3)))
2: (MOVE-TOWER 1 2 3 1 (NIL (1 2) (3)))
3: (MOVE-DISK 2 1 (NIL (1 2) (3)))
3: returned ((1) (2) (3))
2: returned ((1) (2) (3))
2: (MOVE-DISK 2 3 ((1) (2) (3)))
2: returned ((1) NIL (2 3))
2: (MOVE-TOWER 1 1 2 3 ((1) NIL (2 3)))
3: (MOVE-DISK 1 3 ((1) NIL (2 3)))
3: returned (NIL NIL (1 2 3))
2: returned (NIL NIL (1 2 3))
1: returned (NIL NIL (1 2 3))
0: returned (NIL NIL (1 2 3))
(NIL NIL (1 2 3))
</pre>
The trace gives us information as to what subgoals each operator
application is trying to establish. For example, the top level
subgoals are the following:
<pre>
0: (MOVE-TOWER 3 1 2 3 ((1 2 3) NIL NIL))
1: (MOVE-TOWER 2 1 3 2 ((1 2 3) NIL NIL))
...
1: returned ((3) (1 2) NIL)
1: (MOVE-DISK 1 3 ((3) (1 2) NIL))
1: returned (NIL (1 2) (3))
1: (MOVE-TOWER 2 2 1 3 (NIL (1 2) (3)))
...
1: returned (NIL NIL (1 2 3))
0: returned (NIL NIL (1 2 3))
</pre>
They translate directly to the following: In order to move a tower
of 3 disks from peg 1 to peg 3 using peg 2 as a buffer
(i.e. <tt>(MOVE-TOWER 3 1 2 3 ((1 2 3) NIL NIL))</tt>)
we do the following:
<ol>
<li>
"<tt>1: (MOVE-TOWER 2 1 3 2 ((1 2 3) NIL NIL))</tt>"<br>
Move a tower of 2 disks from peg 1 to peg 2 using peg 3 as a buffer.
The result of the move is the following:<br>
"<tt>1: returned ((3) (1 2) NIL)</tt>"
<li>
"<tt>1: (MOVE-DISK 1 3 ((3) (1 2) NIL))</tt>"<br>
Move a top disk from peg 1 to peg 3. The result of this move is:<br>
"<tt>1: returned (NIL (1 2) (3))</tt>"<br>
<li>"<tt>1: (MOVE-TOWER 2 2 1 3 (NIL (1 2) (3)))</tt>"<br>
Move a tower of 2 disks from peg 2 to peg 3 using peg 1 as a buffer,
yielding the following configuration:<br>
"<tt>1: returned (NIL NIL (1 2 3))</tt>"<br>
</ol>
</body>
</html>
|