Datasets:
Tasks:
Text Generation
Languages:
English
File size: 40,894 Bytes
7a045c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 |
<html>
<head>
<title>LISP Tutorial 1: Basic LISP Programming</title>
</head>
<body BGCOLOR=FFFFFF>
<h1>LISP Tutorial 1: Basic LISP Programming</h1>
<h2>LISP Expressions</h2>
<p>When you start up the Common LISP environment, you should
see a prompt, which means that LISP is waiting for you to enter
a LISP expression. In the environment I am using, it looks like
the following:
<pre>
USER(1):
</pre>
The Common LISP environment follows the algorithm below
when interacting with users:
<pre>
loop
read in an expression from the console;
evaluate the expression;
print the result of evaluation to the console;
end loop.
</pre>
Common LISP reads in an expression, evaluates it,
and then prints out the result. For example, if you want to
compute the value of <em>(2 * cos(0) * (4 + 6))</em>, you type in:
<pre>
USER(1): (* 2 (cos 0) (+ 4 6))
</pre>
Common LISP replies:
<pre>
20.0
</pre>
before prompting you to enter the next expression.
Several things are worth noting:
<ul>
<li>LISP expressions are composed of <em>forms</em>.
The most common LISP form is <em>function application</em>.
LISP represents a function call <em>f(x)</em>
as <tt>(f x)</tt>. For example, <em>cos(0)</em>
is written as <tt>(cos 0)</tt>.
<li>LISP expressions are case-insensitive. It makes
no difference whether we type <tt>(cos 0)</tt> or
<tt>(COS 0)</tt>.
<li>Similarly, "<tt>+</tt>" is the name of the
addition function that returns the sum of
its arguments.
<li>Some functions, like "<tt>+</tt>" and "<tt>*</tt>",
could take an arbitrary number of arguments. In our
example, "<tt>*</tt>" took three arguments. It could
as well take 2 arguments, as in "<tt>(* 2 3)</tt>", or
4 arguments, as in "<tt>(* 2 3 4 5)</tt>".
<li>In general,
a function application form looks like
<tt>(<em>function</em>
<em>argument<sub>1</sub></em> <em>argument<sub>2</sub></em>
... <em>argument<sub>n</sub></em>)</tt>.
As in many programming languages (e.g. C/C++),
LISP evaluates function calls in <em>applicative order</em>, which
means that all the argument forms are evaluated
before the function is invoked. That is to say, the
argument forms <tt>(cos 0)</tt>
and <tt>(+ 4 6)</tt> are respectively evaluated to the
values <em>1</em> and
<em>10</em> before they are passed as arguments to the <tt>*</tt>
function.
Some other forms, like
the <em>conditionals</em> we will see later, are not evaluated in
applicative order.
<li>Numeric values like <tt>4</tt> and <tt>6</tt> are
called <em>self-evaluating forms</em>: they evaluate
to themselves. To evaluate <tt>(+ 4 6)</tt> in applicative order,
the forms <tt>4</tt> and <tt>6</tt> are respectively evaluated
to the values <em>4</em> and <em>6</em> before they are passed
as arguments to the <tt>+</tt> function.
</ul>
<p>Complex arithmatic expressions can be constructed from built-in
functions like the following:
<p><table border=1>
<tr>
<th>Numeric Functions</th><th>Meaning</th>
</tr>
<tr>
<td><tt>(+ <em>x<sub>1</sub></em> <em>x<sub>2</sub></em> ... <em>x<sub>n</sub></em>)</tt></td>
<td>The sum of <em>x<sub>1</sub></em>, <em>x<sub>2</sub></em>, ..., <em>x<sub>n</sub></em></td>
</tr>
<tr>
<td><tt>(* <em>x<sub>1</sub></em> <em>x<sub>2</sub></em> ... <em>x<sub>n</sub></em>)</tt></td>
<td>The product of <em>x<sub>1</sub></em>, <em>x<sub>2</sub></em>, ..., <em>x<sub>n</sub></em></td>
</tr>
<tr>
<td><tt>(- <em>x</em> <em>y</em>)</tt></td>
<td>Subtract <em>y</em> from <em>x</em></td>
</tr>
<tr>
<td><tt>(/ <em>x</em> <em>y</em>)</tt></td>
<td>Divide <em>x</em> by <em>y</em></td>
</tr>
<tr>
<td><tt>(rem <em>x</em> <em>y</em>)</tt></td>
<td>The remainder of dividing <em>x</em> by <em>y</em></td>
</tr>
<tr>
<td><tt>(abs <em>x</em>)</tt></td>
<td>The absolute value of <em>x</em></td>
</tr>
<tr>
<td><tt>(max <em>x<sub>1</sub></em> <em>x<sub>2</sub></em> ... <em>x<sub>n</sub></em>)</tt></td>
<td>The maximum of <em>x<sub>1</sub></em>, <em>x<sub>2</sub></em>, ..., <em>x<sub>n</sub></em></td>
</tr>
<tr>
<td><tt>(min <em>x<sub>1</sub></em> <em>x<sub>2</sub></em> ... <em>x<sub>n</sub></em>)</tt></td>
<td>The minimum of <em>x<sub>1</sub></em>, <em>x<sub>2</sub></em>, ..., <em>x<sub>n</sub></em></td>
</tr>
</table>
<p>Common LISP has a rich set of pre-defined numerical functions.
For a complete coverage, consult Chapter 12 of the book, <em>Common
LISP, The Language (2nd Edition)</em> (CLTL2) by Guy Steele. In
general, we will not be able to cover all aspects of Common LISP
in this tutorial.
Adventurous readers should consult CLTL2 frequently for more
in-depth explanation of various features of the language.
<p><hr>
<b>Exercise:</b> Look up pages 376-378 of CLTL2 and find out
what the functions <tt>floor</tt> and <tt>ceiling</tt> are
for. Then, find out the subtle difference between <tt>mod</tt>
and <tt>rem</tt>.
<hr>
<h2>Defining Functions</h2>
<p>Evaluating expressions is not very interesting. We would like to
build expression abstractions that could be reused in the future.
For example, we could type in the following:
<pre>
USER(2): (defun double (x) (* x 2))
DOUBLE
</pre>
In the above, we define a function named <tt>double</tt>, which
returns two times the value of its input argument <em>x</em>. We can then
test-drive the function as below:
<pre>
USER(3): (double 3)
6
USER(4): (double 7)
14
</pre>
<h2>Editing, Loading and Compiling LISP Programs</h2>
<p>Most of the functions we would like to write is going to
be a lot longer than the <tt>double</tt> function.
When working with complex programs, it is usually desirable
to edit the program with an editor, fully debug the code,
and then compile it for faster performance. Use
your favorite text editor (mine is <tt>emacs</tt>) to key in the
following function definition:
<pre>
;;; testing.lisp
;;; by Philip Fong
;;;
;;; Introductory comments are preceded by ";;;"
;;; Function headers are preceded by ";;"
;;; Inline comments are introduced by ";"
;;;
;;
;; Triple the value of a number
;;
(defun triple (X)
"Compute three times X." ; Inline comments can
(* 3 X)) ; be placed here.
;;
;; Negate the sign of a number
;;
(defun negate (X)
"Negate the value of X." ; This is a documentation string.
(- X))
</pre>
Save the above in the file <tt>testing.lisp</tt>. Now load
the definition into the LISP environment by typing:
<pre>
USER(5): (load "testing.lisp")
; Loading ./testing.lisp
T
</pre>
Let us try to see if they are working properly.
<pre>
USER(6): (triple 2)
6
USER(7): (negate 3)
-3
</pre>
When functions are fully debugged, we can also
compile them into binaries:
<pre>
USER(8): (compile-file "testing.lisp")
</pre>
Depending on whether your code is well-formed, and what system
you are using, some compilation messages will be generated.
The compiled code can be loaded into the LISP environment later by
using the following:
<pre>
USER(9): (load "testing")
; Fast loading ./testing.fasl
T
</pre>
<h2>Control Stuctures: Recursions and Conditionals</h2>
<p>Now that we are equipped with all the tools for
developing LISP programs, let us venture into
something more interesting. Consider the definition of
factorials:
<table>
<tr>
<td> </td><td><em>n! = 1</em></td><td> </td><td>if <em>n = 1</em></td>
</tr>
<tr>
<td> </td><td><em>n! = n * (n - 1)!</em></td><td> </td><td>if <em>n > 1</em></td>
</tr>
</table>
We can implement a function to compute factorials using
recursion:
<pre>
(defun factorial (N)
"Compute the factorial of N."
(if (= N 1)
1
(* N (factorial (- N 1)))))
</pre>
The <tt>if</tt> form checks if <tt>N</tt> is one, and
returns one if that is the case, or else returns
<em>N * (N - 1)!</em>.
Several points are worth noting:
<ul>
<li>The condition expression <tt>(= N 1)</tt> is
a relational expression. It returns boolean
values <tt>T</tt> or <tt>NIL</tt>. In fact, LISP
treats <tt>NIL</tt> as false, and everything else
as true. Other relational operators include the
following:
<p><table border=1>
<tr>
<th>Relational Operators</th><th>Meaning</th>
</tr>
<tr>
<td><tt>(= <em>x</em> <em>y</em>)</tt></td>
<td><em>x</em> is equal to <em>y</em></td>
</tr>
<tr>
<td><tt>(/= <em>x</em> <em>y</em>)</tt></td>
<td><em>x</em> is not equal to <em>y</em></td>
</tr>
<tr>
<td><tt>(< <em>x</em> <em>y</em>)</tt></td>
<td><em>x</em> is less than <em>y</em></td>
</tr>
<tr>
<td><tt>(> <em>x</em> <em>y</em>)</tt></td>
<td><em>x</em> is greater than <em>y</em></td>
</tr>
<tr>
<td><tt>(<= <em>x</em> <em>y</em>)</tt></td>
<td><em>x</em> is no greater than <em>y</em></td>
</tr>
<tr>
<td><tt>(>= <em>x</em> <em>y</em>)</tt></td>
<td><em>x</em> is no less than <em>y</em></td>
</tr>
</table>
<p>
<li>The <tt>if</tt> form is not a <em>strict function</em>
(strict functions evaluate their arguments in applicative
order).
Instead, the <tt>if</tt> form evaluates
the condition <tt>(= N 1)</tt> before further
evaluating the other two arguments.
If the condition evaluates to true, then only the
second argument is evaluated, and its value is
returned as the value of the <tt>if</tt> form.
Otherwise, the third argument is evaluated, and its
value is returned. Forms that are not strict
functions are called
<em>special forms</em>.
<li>The function is recursive. The definition of <tt>factorial</tt>
involves invocation of itself. Recursion is, for now, our only
mechanism for producing looping behavior. Specifically,
the kind of recursion we are looking at is called <em>linear
recursion</em>, in which the function may make at most one
recursive call from any level of invocation.
</ul>
<p>To better understand the last point,
we can make use of the debugging facility
<tt>trace</tt> (do not compile your code if you want to use
<tt>trace</tt>):
<pre>
USER(11): (trace factorial)
(FACTORIAL)
USER(12): (factorial 4)
0: (FACTORIAL 4)
1: (FACTORIAL 3)
2: (FACTORIAL 2)
3: (FACTORIAL 1)
3: returned 1
2: returned 2
1: returned 6
0: returned 24
24
</pre>
Tracing <tt>factorial</tt> allows us to examine
the recursive invocation of the function. As you
can see, at most one recursive call is made from
each level of invocation.
<p><hr><b>Exercise:</b>
The <em>N</em>'th <em>triangular number</em> is
defined to be <em>1 + 2 + 3 + ... + N</em>.
Alternatively, we could give a recursive definition
of triangular number as follows:
<table>
<tr>
<td></td>
<td><em>T(n) = 1</em></td>
<td></td>
<td>if <em>n = 1</em></td>
</tr>
<tr>
<td></td>
<td><em>T(n) = n + T(n-1)</em></td>
<td></td>
<td>if <em>n > 1</em></td>
</tr>
</table>
Use the recursive definition to
help you implement
a linearly recursive function <tt>(triangular <em>N</em>)</tt>
that returns the <em>N</em>'th triangular number.
Enter your function definition into a text file. Then load
it into LISP. Trace the execution of <tt>(triangular 6)</tt>.
<hr>
<p><hr><b>Exercise:</b>
Write down a recursive definition of <em>B<sup>E</sup></em>
(assuming that
both <em>B</em> and <em>E</em> are non-negative integers).
Then implement a linearly
recursive function <tt>(power <em>B</em> <em>E</em>)</tt> that
computes <em>B<sup>E</sup></em>.
Enter your function definition into a text file. Then load
it into LISP. Trace the execution of <tt>(power 2 6)</tt>.
<hr>
<h2>Multiple Recursions</h2>
<p>Recall the definition of Fibonacci numbers:
<table>
<tr>
<td> </td> <td><em>Fib(n) = 1</em></td> <td> </td>
<td>for <em>n = 0</em> or <em>n = 1</em></td>
</tr>
<tr>
<td> </td> <td><em>Fib(n) = Fib(n-1) + Fib(n-2)</em></td> <td> </td>
<td>for <em>n > 1</em></td>
</tr>
</table>
This definition can be directly translated to the
following LISP code:
<pre>
(defun fibonacci (N)
"Compute the N'th Fibonacci number."
(if (or (zerop N) (= N 1))
1
(+ (fibonacci (- N 1)) (fibonacci (- N 2)))))
</pre>
<p>Again, several observations can be made.
First, the function call <tt>(zerop N)</tt> tests if <tt>N</tt> is
zero. It is merely a shorthand for <tt>(= N 0)</tt>. As such,
<tt>zerop</tt> returns either <tt>T</tt> or <tt>NIL</tt>. We
call such a boolean function a <em>predicate</em>, as indicated by the
suffix <tt>p</tt>. Some other built-in shorthands and predicates
are the following:
<p><table border=1>
<tr>
<th>Shorthand</th><th>Meaning</th>
</tr>
<tr>
<td><tt>(1+ <em>x</em>)</tt></td>
<td><tt>(+ <em>x</em> 1)</tt></td>
</tr>
<tr>
<td><tt>(1- <em>x</em>)</tt></td>
<td><tt>(- <em>x</em> 1)</tt></td>
</tr>
<tr>
<td><tt>(zerop <em>x</em>)</tt></td><td><tt>(= <em>x</em> 0)</tt></td>
</tr>
<tr>
<td><tt>(plusp <em>x</em>)</tt></td><td><tt>(> <em>x</em> 0)</tt></td>
</tr>
<tr>
<td><tt>(minusp <em>x</em>)</tt></td><td><tt>(< <em>x</em> 0)</tt></td>
</tr>
<tr>
<td><tt>(evenp <em>x</em>)</tt></td><td><tt>(= (rem <em>x</em> 2) 0)</tt></td>
</tr>
<tr>
<td><tt>(oddp <em>x</em>)</tt></td><td><tt>(/= (rem <em>x</em> 2) 0)</tt></td>
</tr>
</table>
<p>Second, the <tt>or</tt> form is a logical operator. Like <tt>if</tt>,
<tt>or</tt> is not a strict function.
It evaluates its arguments from left
to right, returning non-<tt>NIL</tt> immediately if it encounters
an argument that evaluates to non-<tt>NIL</tt>. It evaluates
to <tt>NIL</tt> if all tests fail.
For example, in the expression <tt>(or t (= 1 1))</tt>, the second
argument <tt>(= 1 1)</tt> will not be evaluated. Similar logical
connectives are listed below:
<p><table border=1>
<tr>
<th>Logical Operators</th><th>Meaning</th>
</tr>
<tr>
<td><tt>(or <em>x<sub>1</sub></em> <em>x<sub>2</sub></em> ... <em>x<sub>n</sub></em>)</tt></td>
<td>Logical or</td>
</tr>
<tr>
<td><tt>(and <em>x<sub>1</sub></em> <em>x<sub>2</sub></em> ... <em>x<sub>n</sub></em>)</tt></td>
<td>Logical and</td>
</tr>
<tr>
<td><tt>(not <em>x</em>)</tt></td>
<td>Logical negation</td>
</tr>
</table>
<p>Third, the function definition contains two self references.
It first recursively evaluates <tt>(fibonacci (- N 1))</tt> to
compute <em>Fib(N-1)</em>, then evaluates <tt>(fibonacci (- N 2))</tt>
to obtain <em>Fib(N-2)</em>, and lastly return their sum.
This kind of recursive definitiion is called <em>double recursion</em>
(more generally, <em>multiple recursion</em>).
Tracing the function yields the following:
<pre>
USER(20): (fibonacci 3)
0: (FIBONACCI 3)
1: (FIBONACCI 2)
2: (FIBONACCI 1)
2: returned 1
2: (FIBONACCI 0)
2: returned 1
1: returned 2
1: (FIBONACCI 1)
1: returned 1
0: returned 3
3
</pre>
Note that in each level, there could be up to two recursive invocations.
<p><hr><b>Exercise</b>: The Binomial Coefficient <em>B(n, r)</em> is
the coefficient of the term <em>x<sup>r</sup></em> in the binormial
expansion of
<em>(1 + x)<sup>n</sup></em>.
For example, <em>B(4, 2) = 6</em> because <em>(1+x)<sup>4</sup>
= 1 + 4x + 6x<sup>2</sup> + 4x<sup>3</sup> + x<sup>4</sup></em>.
The Binomial Coefficient
can be computed using the <em>Pascal Triangle</em> formula:
<table>
<tr>
<td> </td> <td><em>B(n, r) = 1</em></td> <td> </td>
<td>if <em>r = 0</em> or <em>r = n</em></td>
</tr>
<tr>
<td> </td><td><em>B(n, r) = B(n-1, r-1) + B(n-1, r)</td> <td> </td>
<td>otherwise</td>
</tr>
</table>
Implement a doubly recursive function <tt>(binomial <em>N</em> <em>R</em>)</tt>
that computes the binomial coefficient <em>B(N, R)</em>.
<hr>
<p>Some beginners might find nested function calls like the
following very difficult to understand:
<pre>
(+ (fibonacci (- N 1)) (fibonacci (- N 2)))))
</pre>
To make such expressions easier to write and comprehend, one
could define local name bindings to represent intermediate
results:
<pre>
(let
((F1 (fibonacci (- N 1)))
(F2 (fibonacci (- N 2))))
(+ F1 F2))
</pre>
The <tt>let</tt> special form above defines two local variables,
<tt>F1</tt> and <tt>F2</tt>, which binds to <em>Fib(N-1)</em>
and <em>Fib(N-2)</em> respectively. Under these local
bindings, <tt>let</tt> evaluates <tt>(+ F1 F2)</tt>.
The <tt>fibonacci</tt> function can thus be rewritten as follows:
<pre>
(defun fibonacci (N)
"Compute the N'th Fibonacci number."
(if (or (zerop N) (= N 1))
1
(let
((F1 (fibonacci (- N 1)))
(F2 (fibonacci (- N 2))))
(+ F1 F2))))
</pre>
<p>Notice that <tt>let</tt> creates all bindings in parallel.
That is, both <tt>(fibonacci (- N 1))</tt> and <tt>(fibonacci (- N 2))</tt>
are evaluated first, and then they are bound to <tt>F1</tt> and <tt>F2</tt>.
This means that the following LISP code will not work:
<pre>
(let
((x 1)
(y (* x 2)))
(+ x y))
</pre>
LISP will attempt to evaluate the right hand sides first before
the bindings are established. So, the expression
<tt>(* x 2)</tt> is evaluated before the binding of <tt>x</tt>
is available. To perform sequential binding, use the <tt>let*</tt>
form instead:
<pre>
(let*
((x 1)
(y (* x 2)))
(+ x y))
</pre>
LISP will bind <tt>1</tt> to <tt>x</tt>, then evaluate <tt>(* x 2)</tt>
before the value is bound to <tt>y</tt>.
<h2>Lists</h2>
<p>Numeric values are not the only type of data LISP supports.
LISP is designed for symbolic computing. The fundamental
LISP data structure for supporting symbolic manipulation are
lists. In fact, LISP stands for "LISt Processing."
<p>Lists are containers that supports sequential traversal.
List is also a <em>recursive data structure</em>: its definition
is recursive.
As such, most of its traversal algorithms are recursive functions.
In order to better
understand a recursive abstract data type and prepare oneself
to develop recursive operations on the data type, one should present
the data type in terms of its <em>constructors</em>,
<em>selectors</em> and <em>recognizers</em>.
<p>Constructors are forms that create new
instances of a data type (possibly out of some simpler components).
A list is obtained by
evaluating one of the following constructors:
<ol>
<li><tt>nil</tt>: Evaluating <tt>nil</tt> creates an <em>empty</em>
list;
<li><tt>(cons <em>x</em> <em>L</em>)</tt>: Given a LISP object
<em>x</em> and a list <em>L</em>, evaluating <tt>(cons <em>x</em> <em>L</em>)</tt>
creates a list
containing
<em>x</em> followed by the elements in <em>L</em>.
</ol>
<p>Notice that the above definition is inherently recursive.
For example,
to construct a list containing 1 followed by 2, we could type
in the expression:
<pre>
USER(21): (cons 1 (cons 2 nil))
(1 2)
</pre>
LISP replies by printing <tt>(1 2)</tt>, which is a more
readable representation of a list containing 1 followed by 2.
To understand why the above works, notice that <tt>nil</tt>
is a list (an empty one), and thus <tt>(cons 2 nil)</tt> is
also a list (a list containing 1 followed by nothing). Applying
the second constructor again, we see that <tt>(cons 1 (cons 2 nil))</tt>
is also a list (a list containing 1 followed by 2 followed by nothing).
<p>Typing <tt>cons</tt> expressions could be tedious.
If we already know all the elements in a list, we could
enter our list as <em>list literals</em>. For example, to
enter a list containing all prime numbers less than 20,
we could type in the following expression:
<pre>
USER(22): (quote (2 3 5 7 11 13 17 19))
(2 3 5 7 11 13 17 19)
</pre>
Notice that we have quoted the list using the <tt>quote</tt> special
form. This is necessary
because, without the quote, LISP would interpret the expression
<tt>(2 3 5 7 11 13 17 19)</tt>
as a function call to a function with name "2" and arguments 3, 5, ..., 19
The <tt>quote</tt> is just a syntactic device that instructs LISP
not to evaluate the a form in applicative order, but rather treat it
as a literal.
Since quoting is used frequently in LISP programs,
there is a shorthand for <tt>quote</tt>:
<pre>
USER(23): '(2 3 5 7 11 13 17 19)
(2 3 5 7 11 13 17 19)
</pre>
The quote symbol <tt>'</tt> is nothing but a syntactic shorthand for
<tt>(quote ...)</tt>.
<p>The second ingredient of an abstract data type are its selectors.
Given a composite object constructed out of several components,
a selector form returns one of its components. Specifically,
suppose a list <em>L<sub>1</sub></em> is constructed by evaluating
<tt>(cons <em>x</em> <em>L<sub>2</sub></em>)</tt>, where <em>x</em> is a
LISP object and <em>L<sub>2</sub></em> is a list. Then, the selector forms
<tt>(first <em>L<sub>1</sub></em>)</tt> and <tt>(rest <em>L<sub>1</sub></em>)</tt> evaluate
to <em>x</em> and <em>L<sub>2</sub></em> respectively, as the following
examples illustrate:
<pre>
USER(24): (first '(2 4 8))
2
USER(25): (rest '(2 4 8))
(4 8)
USER(26): (first (rest '(2 4 8)))
4
USER(27): (rest (rest '(2 4 8)))
(8)
USER(28): (rest (rest (rest '(8))))
NIL
</pre>
<p>Finally, we look at recognizers, expressions that test how an
object is constructed. Corresponding to each constructor of
a data type is a recognizer. In the case of list, they are
<tt>null</tt> for <tt>nil</tt> and <tt>consp</tt> for <tt>cons</tt>.
Given a list <em>L</em>, <tt>(null <em>L</em>)</tt> returns
<tt>t</tt> iff <em>L</em> is <tt>nil</tt>, and <tt>(consp <em>L</em>)</tt>
returns <tt>t</tt> iff <em>L</em> is constructed from <tt>cons</tt>.
<pre>
USER(29): (null nil)
T
USER(30): (null '(1 2 3))
NIL
USER(31): (consp nil)
NIL
USER(32): (consp '(1 2 3))
T
</pre>
Notice that, since lists have only two constructors, the recognizers
are complementary. Therefore, we usually need only one of them.
In our following discussion, we use only <tt>null</tt>.
<h2>Structural Recursion with Lists</h2>
<p>As we have promised, understanding how the constructors, selectors and
recognizers of lists work helps us to develop recursive functions that
traverse a list. Let us begin with an example.
The LISP built-in function <tt>list-length</tt> counts the number of
elements in a list. For example,
<pre>
USER(33): (list-length '(2 3 5 7 11 13 17 19))
8
</pre>
Let us try to see how such a function can be implemented recursively.
A given list <em>L</em> is created by either one of the two constructors,
namely <tt>nil</tt> or a <tt>cons</tt>:
<ul>
<li><em>Case 1</em>: <em>L</em> is <tt>nil</tt>.<br>
The length of an empty list is zero.
<li><em>Case 2</em>: <em>L</em> is constructed by <tt>cons</tt>.<br>
Then <em>L</em> is composed of two parts, namely,
<tt>(first <em>L</em>)</tt> and <tt>(rest <em>L</em>)</tt>. In such
case, the length of <em>L</em> can be obtained inductively by adding
1 to the length of <tt>(rest <em>L</em>)</tt>.
</ul>
<p>Formally, we could
implement our own version of <tt>list-length</tt> as follows:
<pre>
(defun recursive-list-length (L)
"A recursive implementation of list-length."
(if (null L)
0
(1+ (recursive-list-length (rest L)))))
</pre>
Here, we use the recognizer <tt>null</tt> to differentiate how
<em>L</em> is constructed. In case <em>L</em> is <tt>nil</tt>,
we return 0 as its length. Otherwise, <em>L</em> is a <tt>cons</tt>,
and we return 1 plus the length of <tt>(rest <em>L</em>)</tt>.
Recall that <tt>(1+ <em>n</em>)</tt> is simply a shorthand for
<tt>(+ <em>n</em> 1)</tt>.
<p>Again, it is instructive to use the trace facilities to
examine the unfolding of recursive invocations:
<pre>
USER(40): (trace recursive-list-length)
(RECURSIVE-LIST-LENGTH)
USER(41): (recursive-list-length '(2 3 5 7 11 13 17 19))
0: (RECURSIVE-LIST-LENGTH (2 3 5 7 11 13 17 19))
1: (RECURSIVE-LIST-LENGTH (3 5 7 11 13 17 19))
2: (RECURSIVE-LIST-LENGTH (5 7 11 13 17 19))
3: (RECURSIVE-LIST-LENGTH (7 11 13 17 19))
4: (RECURSIVE-LIST-LENGTH (11 13 17 19))
5: (RECURSIVE-LIST-LENGTH (13 17 19))
6: (RECURSIVE-LIST-LENGTH (17 19))
7: (RECURSIVE-LIST-LENGTH (19))
8: (RECURSIVE-LIST-LENGTH NIL)
8: returned 0
7: returned 1
6: returned 2
5: returned 3
4: returned 4
3: returned 5
2: returned 6
1: returned 7
0: returned 8
8
</pre>
<p>The kind of recursion we see here is called <em>structural
recursion</em>. Its standard pattern is as follows. To
process an instance <em>X</em> of a recursive data type:
<ol>
<li>Use the recognizers to determine how <em>X</em> is created
(i.e. which constructor creates it). In our example, we
use <tt>null</tt> to decide if a list is created by
<tt>nil</tt> or <tt>cons</tt>.
<li>For instances that are atomic (i.e. those created by
constructors with no components), return a trivial
value. For example, in the case when a list is <tt>nil</tt>,
we return zero as its length.
<li>If the instance is composite, then use the selectors to
extract its components. In our example, we use <tt>first</tt>
and <tt>rest</tt> to extract the two components of a nonempty
list.
<li>Following that, we apply recursion on one or more components
of <em>X</em>. For instance, we recusively invoked
<tt>recursive-list-length</tt> on <tt>(rest L)</tt>.
<li>Finally, we use either the constructors or some other
functions to combine the result of the recursive calls,
yielding the value of the function. In the case of
<tt>recursive-list-length</tt>, we return one plus the
result of the recursive call.
</ol>
<p><hr><b>Exercise</b>: Implement a linearly recursive
function <tt>(sum <em>L</em>)</tt> which
computes the sum of all numbers in a list <em>L</em>.
Compare your solution with the standard pattern of
structural recursion.
<hr>
<p>Sometimes, long traces like the one for list-length
may be difficult to read on a terminal screen.
Common LISP allows you to capture screen I/O into a file
so that you can, for example, produce a hard copy for
more comfortable reading. To capture the trace of
executing <tt>(recursive-list-length '(2 3 5 7 11 13 17 19))</tt>,
we use the <tt>dribble</tt> command:
<pre>
USER(42): (dribble "output.txt")
dribbling to file "output.txt"
NIL
USER(43): (recursive-list-length '(2 3 5 7 11 13 17 19))
0: (RECURSIVE-LIST-LENGTH (2 3 5 7 11 13 17 19))
1: (RECURSIVE-LIST-LENGTH (3 5 7 11 13 17 19))
2: (RECURSIVE-LIST-LENGTH (5 7 11 13 17 19))
3: (RECURSIVE-LIST-LENGTH (7 11 13 17 19))
4: (RECURSIVE-LIST-LENGTH (11 13 17 19))
5: (RECURSIVE-LIST-LENGTH (13 17 19))
6: (RECURSIVE-LIST-LENGTH (17 19))
7: (RECURSIVE-LIST-LENGTH (19))
8: (RECURSIVE-LIST-LENGTH NIL)
8: returned 0
7: returned 1
6: returned 2
5: returned 3
4: returned 4
3: returned 5
2: returned 6
1: returned 7
0: returned 8
8
USER(44): (dribble)
</pre>
The form <tt>(dribble "output.txt")</tt> instructs Common LISP
to begin capturing all terminal I/O into a file called <tt>output.txt</tt>.
The trailing <tt>(dribble)</tt> form instructs Common LISP to
stop I/O capturing, and closes the file <tt>output.txt</tt>. If we
examine <tt>output.txt</tt>, we will see the following:
<pre>
dribbling to file "output.txt"
NIL
USER(43): (recursive-list-length '(2 3 5 7 11 13 17 19))
0: (RECURSIVE-LIST-LENGTH (2 3 5 7 11 13 17 19))
1: (RECURSIVE-LIST-LENGTH (3 5 7 11 13 17 19))
2: (RECURSIVE-LIST-LENGTH (5 7 11 13 17 19))
3: (RECURSIVE-LIST-LENGTH (7 11 13 17 19))
4: (RECURSIVE-LIST-LENGTH (11 13 17 19))
5: (RECURSIVE-LIST-LENGTH (13 17 19))
6: (RECURSIVE-LIST-LENGTH (17 19))
7: (RECURSIVE-LIST-LENGTH (19))
8: (RECURSIVE-LIST-LENGTH NIL)
8: returned 0
7: returned 1
6: returned 2
5: returned 3
4: returned 4
3: returned 5
2: returned 6
1: returned 7
0: returned 8
8
USER(44): (dribble)
</pre>
<h2>Symbols</h2>
<p>The lists we have seen so far are lists of numbers. Another data
type of LISP is <em>symbols</em>. A symbol is simply a sequence
of characters:
<pre>
USER(45): 'a ; LISP is case-insensitive.
A
USER(46): 'A ; 'a and 'A evaluate to the same symbol.
A
USER(47): 'apple2 ; Both alphanumeric characters ...
APPLE2
USER(48): 'an-apple ; ... and symbolic characters are allowed.
AN-APPLE
USER(49): t ; Our familiar t is also a symbol.
T
USER(50): 't ; In addition, quoting is redundant for t.
T
USER(51): nil ; Our familiar nil is also a symbol.
NIL
USER(52): 'nil ; Again, it is self-evaluating.
NIL
</pre>
<p>With symbols, we can build more interesting lists:
<pre>
USER(53): '(how are you today ?) ; A list of symbols.
(HOW ARE YOU TODAY ?)
USER(54): '(1 + 2 * x) ; A list of symbols and numbers.
(1 + 2 * X)
USER(55): '(pair (2 3)) ; A list containing 'pair and '(2 3).
(pair (2 3))
</pre>
Notice that the list <tt>(pair (2 3))</tt>
has length 2:
<pre>
USER(56): (recursive-list-length '(pair (2 3)))
2
</pre>
Notice also the result of applying accessors:
<pre>
USER(57): (first '(pair (2 3)))
PAIR
USER(58): (rest '(pair (2 3)))
((2 3))
</pre>
Lists containing other lists as members are difficult to understand
for beginners. Make sure you understand the above example.
<h2>Example: <tt>nth</tt></h2>
<p>LISP defines a function <tt>(nth <em>N</em> <em>L</em>)</tt>
that returns the <em>N</em>'th member of list <em>L</em> (assuming
that the elements are numbered from zero onwards):
<pre>
USER(59): (nth 0 '(a b c d))
A
USER(60): (nth 2 '(a b c d))
C
</pre>
We could implement our own version of <tt>nth</tt> by linear recursion.
Given <em>N</em> and <em>L</em>, either <em>L</em> is <tt>nil</tt>
or it is constructed by <tt>cons</tt>.
<ul>
<li><em>Case 1</em>: <em>L</em> is <tt>nil</tt>.<br>
Accessing the <em>N</em>'th element is an undefined operation,
and our implementation should arbitrarily return <tt>nil</tt> to
indicate this.
<li><em>Case 2</em>: <em>L</em> is constructed by a <tt>cons</tt>.<br>
Then <em>L</em>
has two components: <tt>(first <em>L</em>)</tt> and
<tt>(rest <em>L</em>)</tt>. There are
two subcases: either <em>N = 0</em> or <em>N > 0</em>:
<ul>
<li> <em>Case 2.1</em>: <em>N = 0</em>.<br>
The zeroth element of <em>L</em> is simply
<tt>(first <em>L</em>)</tt>.
<li> <em>Case 2.2</em>: <em>N > 0</em>.<br>
The <em>N</em>'th
member of <em>L</em> is exactly the <em>(N-1)</em>'th member of
<tt>(rest <em>L</em>)</tt>.
</ul>
</ul>
The following code implements our algorithm:
<pre>
(defun list-nth (N L)
"Return the N'th member of a list L."
(if (null L)
nil
(if (zerop N)
(first L)
(list-nth (1- N) (rest L)))))
</pre>
Recall that <tt>(1- N)</tt> is merely a shorthand for <tt>(- N 1)</tt>.
Notice that both our implementation and its
correctness argument closely follow the standard pattern
of structural recursion.
Tracing the execution of the function, we get:
<pre>
USER(61): (list-nth 2 '(a b c d))
0: (LIST-NTH 2 (A B C D))
1: (LIST-NTH 1 (B C D))
2: (LIST-NTH 0 (C D))
2: returned C
1: returned C
0: returned C
C
</pre>
<p><hr><b>Exercise</b>: LISP has a built-in function <tt>(last <em>L</em>)</tt>
that returns a the last <tt>cons</tt> structure in a given list <em>L</em>.
<pre>
USER(62): (last '(a b c d))
(d)
USER(63): (last '(1 2 3))
(3)
</pre>
Implement your own version of <tt>last</tt>
using linear recursion. You may assume that <tt>(last nil)</tt>
returns <tt>nil</tt>. Compare your implementation with
the standard pattern of structural recursion.
<hr>
<p>Notice that we have a standard if-then-else-if structure
in our implementation of <tt>list-nth</tt>.
Such logic can alternatively
be implemented using the <tt>cond</tt> special form.
<pre>
(defun list-nth (n L)
"Return the n'th member of a list L."
(cond
((null L) nil)
((zerop n) (first L))
(t (list-nth (1- n) (rest L)))))
</pre>
The <tt>cond</tt> form above is evaluated as follows. The condition
<tt>(null L)</tt> is evaluated first. If the result is true,
then <tt>nil</tt> is returned. Otherwise, the condition <tt>(zerop n)</tt>
is evaluated. If the condition holds, then the value of <tt>(first L)</tt> is
returned. In case neither of the conditions holds,
the value of <tt>(list-nth
(1- n) (rest L))</tt> is returned.
<p><hr><b>Exercise</b>: Survey CLTL2 section 7.6 (pages 156-161) and find
out what other conditional special forms are available in Common LISP.
Do you know when the special forms <tt>when</tt> and <tt>unless</tt>
should be used instead of <tt>if</tt>?
<hr>
<h2>Example: <tt>member</tt></h2>
<p>LISP defines a function <tt>(member <em>E</em> <em>L</em>)</tt>
that returns non-NIL if <em>E</em> is a member of <em>L</em>.
<pre>
USER(64): (member 'b '(perhaps today is a good day to die)) ; test fails
NIL
USER(65): (member 'a '(perhaps today is a good day to die)) ; returns non-NIL
'(a good day to die)
</pre>
We implement our own recursive version as follows:
<pre>
(defun list-member (E L)
"Test if E is a member of L."
(cond
((null L) nil)
((eq E (first L)) t)
(t (list-member E (rest L)))))
</pre>
The correctness of the above implementation is easy to justify. The list
<em>L</em> is either constructed by <em>nil</em> or by a call to
<em>cons</em>:
<ul>
<li><em>Case 1</em>: <em>L</em> is <tt>nil</tt>.<br>
<em>L</em> is
empty, and there is no way <em>E</em> is in <em>L</em>.
<li><em>Case 2</em>: <em>L</em>
is constructed by <tt>cons</tt><br>
Then it has two components:
<tt>(first <em>L</em>)</tt> and <tt>(rest <em>L</em>)</tt>.
There are two cases, either <tt>(first <em>L</em>)</tt> is <em>E</em>
itself, or it is not.
<ul>
<li><em>Case 2.1</em>: <em>E</em> equals <tt>(first <em>L</em>)</tt>.<br>
This means that <em>E</em> is a member of <em>L</em>,
<li><em>Case 2.2</em>: <em>E</em> does not equal <tt>(first <em>L</em>)</tt>.<br>
Then <em>E</em> is a member of <em>L</em> iff <em>E</em> is a
member of <tt>(rest <em>L</em>)</tt>.
</ul>
</ul>
<p>Tracing the execution of <tt>list-member</tt>, we get the following:
<pre>
USER(70): (list-member 'a '(perhaps today is a good day to die))
0: (LIST-MEMBER A (PERHAPS TODAY IS A GOOD DAY TO DIE))
1: (LIST-MEMBER A (TODAY IS A GOOD DAY TO DIE))
2: (LIST-MEMBER A (IS A GOOD DAY TO DIE))
3: (LIST-MEMBER A (A GOOD DAY TO DIE))
3: returned T
2: returned T
1: returned T
0: returned T
T
</pre>
<p>In the implementation of <tt>list-member</tt>,
the function call <tt>(eq <em>x</em> <em>y</em>)</tt> tests if two symbols
are the same. In fact, the semantics of this test determines what
we mean by a member:
<pre>
USER(71): (list-member '(a b) '((a a) (a b) (a c)))
0: (LIST-MEMBER (A B) ((A A) (A B) (A C)))
1: (LIST-MEMBER (A B) ((A B) (A C)))
2: (LIST-MEMBER (A B) ((A C)))
3: (LIST-MEMBER (A B) NIL)
3: returned NIL
2: returned NIL
1: returned NIL
0: returned NIL
NIL
</pre>
In the example above, we would have expected a result of <tt>t</tt>.
However, since <tt>'(a b)</tt> does not <tt>eq</tt> another copy
of <tt>'(a b)</tt> (they are not the same symbol),
<tt>list-member</tt> returns <tt>nil</tt>.
If we want to account for list equivalence, we could have used
the LISP built-in function <tt>equal</tt> instead of <tt>eq</tt>.
Common LISP defines the following set of predicates for testing
equality:
<p><table border=1>
<tr>
<td><tt>(= <em>x</em> <em>y</em>)</tt></td>
<td>True if <em>x</em> and <em>y</em> evaluate to the same number.</td>
</tr>
<tr>
<td><tt>(eq <em>x</em> <em>y</em>)</tt></td>
<td>True if <em>x</em> and <em>y</em> evaluate to the same symbol.</td>
</tr>
<tr>
<td><tt>(eql <em>x</em> <em>y</em>)</tt></td>
<td>True if <em>x</em> and <em>y</em> are either <tt>=</tt> or <tt>eq</tt>.</td>
</tr>
<tr>
<td><tt>(equal <em>x</em> <em>y</em>)</tt></td>
<td>True if <em>x</em> and <em>y</em> are <tt>eql</tt> or if
they evaluate to the same list.</td>
</tr>
<tr>
<td><tt>(equalp <em>x</em> <em>y</em>)</tt></td>
<td>To be discussed in Tutorial 4.</td>
</tr>
</table>
<p><hr><b>Exercise</b>: What would be the behavior of <tt>list-member</tt>
if we replace <tt>eq</tt> by <tt>=</tt>? By <tt>eql</tt>? By <tt>equal</tt>?
<hr>
<h2>Example: <tt>append</tt></h2>
<p>LISP defines a function <tt>append</tt> that appends one list by
another:
<pre>
USER(72): (append '(a b c) '(c d e))
(A B C C D E)
</pre>
We implement a recursive version of <tt>append</tt>.
Suppose we are given two lists <em>L1</em> and <em>L2</em>.
<em>L1</em> is either <tt>nil</tt> or constructed by <tt>cons</tt>.
<ul>
<li><em>Case 1</em>: <em>L1</em> is <tt>nil</tt>.<br>
Appending <em>L2</em> to
<em>L1</em> simply results in <em>L2</em>.
<li><em>Case 2</em>: <em>L1</em>
is composed of two parts: <tt>(first <em>L1</em>)</tt> and
<tt>(rest <em>L1</em>)</tt>. If we know the result of appending <em>L2</em>
to <tt>(rest <em>L1</em>)</tt>, then we can take this result, insert
<tt>(first <em>L1</em>)</tt> to the front, and we then have
the list we want.
</ul>
<p>Formally, we define the following function:
<pre>
(defun list-append (L1 L2)
"Append L1 by L2."
(if (null L1)
L2
(cons (first L1) (list-append (rest L1) L2))))
</pre>
An execution trace is the following:
<pre>
USER(73): (list-append '(a b c) '(c d e))
0: (LIST-APPEND (A B C) (C D E))
1: (LIST-APPEND (B C) (C D E))
2: (LIST-APPEND (C) (C D E))
3: (LIST-APPEND NIL (C D E))
3: returned (C D E)
2: returned (C C D E)
1: returned (B C C D E)
0: returned (A B C C D E)
(A B C C D E)
</pre>
<p><hr><b>Exercise</b>: LISP defines a function <tt>(butlast <em>L</em>)</tt>
that returns a list containing the same elements in <em>L</em> except
for the last one. Implement your own version of <tt>butlast</tt>
using linear recursion. You may assume that <tt>(butlast nil)</tt>
returns <tt>nil</tt>.
<hr>
<h2>Using Lists as Sets</h2>
Formally, lists are ordered sequences. They differ with sets
in two ways:
<ol>
<li>Sets are unordered, but lists are. <tt>(a b c)</tt>
and <tt>(c b a)</tt> are two different lists.
<li>
An element either belong to a set or it does not. There is
no notion of multiple occurrences.
Yet, a list may contain multiple occurrences of the same element.
<tt>(a b b c)</tt> and <tt>(a b c)</tt> are two different lists.
</ol>
However, one may use lists to approximate sets, although the
performance of such implementation is not the greatest.
<p>We have already seen how we can use the built-in function <tt>member</tt>
to test set membership. LISP also defines functions like
<tt>(intersection <em>L1</em> <em>L2</em>)</tt>,
<tt>(union <em>L1</em> <em>L2</em>)</tt>
and <tt>(difference <em>L1</em> <em>L2</em>)</tt> for
boolean operations on sets. In fact, these functions
are not difficult to implement. Consider the following
implementation of set intersection:
<pre>
(defun list-intersection (L1 L2)
"Return a list containing elements belonging to both L1 and L2."
(cond
((null L1) nil)
((member (first L1) L2)
(cons (first L1) (list-intersection (rest L1) L2)))
(t (list-intersection (rest L1) L2))))
</pre>
The correctness of the implementation is easy to see.
<em>L1</em> is either an empty set (<tt>nil</tt>) or it is not:
<ul>
<li><em>Case 1</em>: <em>L1</em> is an empty set.<br>
Then its interection with <em>L2</em>
is obviously empty.
<li><em>Case 2</em>: <em>L1</em> is not empty.<br>
<em>L1</em> has both a <tt>first</tt>
component and a <tt>rest</tt> component. There are two cases:
either <tt>(first <em>L1</em>)</tt> is a member of <em>L2</em> or it is not.
<ul>
<li><em>Case 2.1</em>: <tt>(first <em>L1</em>)</tt> is a member
of <em>L2</em>.<br>
<tt>(first <em>L1</em>)</tt> belongs to both <em>L1</em>
and <em>L2</em>, and thus belong to their intersection. Therefore,
the intersection of <em>L1</em> and <em>L2</em> is simply
<tt>(first <em>L1</em>)</tt> plus the intersection of <tt>(rest <em>L1</em>)</tt> and
<em>L2</em>.
<li><em>Case 2.2</em>: <tt>(first <em>L1</em>)</tt> is not a member
of <em>L2</em>.<br>
Since <tt>(first <em>L1</em>)</tt>
does not belong to <em>L2</em>, it does not belong to the intersection
of <em>L1</em> and <em>L2</em>. As a result, the intersection of
<em>L1</em> and <em>L2</em> is exactly the intersection of
<tt>(rest <em>L1</em>)</tt> and <em>L2</em>.
</ul>
</ul>
<p>A trace of executing the function is given below:
<pre>
USER(80): (trace list-intersection)
(LIST-INTERSECTION)
USER(81): (list-intersection '(1 3 5 7) '(1 2 3 4))
0: (LIST-INTERSECTION (1 3 5 7) (1 2 3 4))
1: (LIST-INTERSECTION (3 5 7) (1 2 3 4))
2: (LIST-INTERSECTION (5 7) (1 2 3 4))
3: (LIST-INTERSECTION (7) (1 2 3 4))
4: (LIST-INTERSECTION NIL (1 2 3 4))
4: returned NIL
3: returned NIL
2: returned NIL
1: returned (3)
0: returned (1 3)
(1 3)
</pre>
<p><hr><b>Exercise</b>: Give a linearly recursive implementation of
<tt>union</tt> and <tt>difference</tt>.
<hr>
</body>
</html>
|