Datasets:
nkjp
/

Modalities:
Text
Formats:
parquet
Languages:
Polish
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
24e1824
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +153 -0
  3. dataset_infos.json +1 -0
  4. dummy/1.1.0/dummy_data.zip +3 -0
  5. nkjp-ner.py +106 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - other
6
+ languages:
7
+ - pl
8
+ licenses:
9
+ - gpl-3-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - structure-prediction
18
+ task_ids:
19
+ - named-entity-recognition
20
+ ---
21
+
22
+ # Dataset Card for [Dataset Name]
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:**
50
+ http://nkjp.pl/index.php?page=0&lang=1
51
+ - **Repository:**
52
+ - **Paper:**
53
+ @book{przepiorkowski2012narodowy,
54
+ title={Narodowy korpus j{\k{e}}zyka polskiego},
55
+ author={Przepi{\'o}rkowski, Adam},
56
+ year={2012},
57
+ publisher={Naukowe PWN}
58
+ - **Leaderboard:**
59
+ - **Point of Contact:**
60
61
+
62
+ ### Dataset Summary
63
+
64
+ A linguistic corpus is a collection of texts where one can find the typical use of a single word or a phrase, as well as their meaning and grammatical function. Nowadays, without access to a language corpus, it has become impossible to do linguistic research, to write dictionaries, grammars and language teaching books, to create search engines sensitive to Polish inflection, machine translation engines and software of advanced language technology. Language corpora have become an essential tool for linguists, but they are also helpful for software engineers, scholars of literature and culture, historians, librarians and other specialists of art and computer sciences.
65
+ The manually annotated 1-million word subcorpus of the NJKP, available on GNU GPL v.3
66
+
67
+ ### Supported Tasks and Leaderboards
68
+
69
+ Named entity recognition
70
+
71
+ [More Information Needed]
72
+
73
+ ### Languages
74
+
75
+ Polish
76
+
77
+ ## Dataset Structure
78
+
79
+ ### Data Instances
80
+
81
+ Two tsv files (train, dev) with two columns (sentence, target) and one (test) with just one (sentence).
82
+
83
+ ### Data Fields
84
+
85
+ - sentence
86
+ - target
87
+
88
+ ### Data Splits
89
+
90
+ Data is splitted in train/dev/test split.
91
+
92
+ ## Dataset Creation
93
+
94
+ ### Curation Rationale
95
+
96
+ This dataset is one of nine evaluation tasks to improve polish language processing.
97
+
98
+ ### Source Data
99
+
100
+ #### Initial Data Collection and Normalization
101
+
102
+ [More Information Needed]
103
+
104
+ #### Who are the source language producers?
105
+
106
+ [More Information Needed]
107
+
108
+ ### Annotations
109
+
110
+ #### Annotation process
111
+
112
+ [More Information Needed]
113
+
114
+ #### Who are the annotators?
115
+
116
+ [More Information Needed]
117
+
118
+ ### Personal and Sensitive Information
119
+
120
+ [More Information Needed]
121
+
122
+ ## Considerations for Using the Data
123
+
124
+ ### Social Impact of Dataset
125
+
126
+ [More Information Needed]
127
+
128
+ ### Discussion of Biases
129
+
130
+ [More Information Needed]
131
+
132
+ ### Other Known Limitations
133
+
134
+ [More Information Needed]
135
+
136
+ ## Additional Information
137
+
138
+ ### Dataset Curators
139
+
140
+ [More Information Needed]
141
+
142
+ ### Licensing Information
143
+
144
+ GNU GPL v.3
145
+
146
+ ### Citation Information
147
+
148
+ @book{przepiorkowski2012narodowy,
149
+ title={Narodowy korpus j{\k{e}}zyka polskiego},
150
+ author={Przepi{\'o}rkowski, Adam},
151
+ year={2012},
152
+ publisher={Naukowe PWN}
153
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "The NKJP-NER is based on a human-annotated part of National Corpus of Polish (NKJP). We extracted sentences with named entities of exactly one type. The task is to predict the type of the named entity.\n", "citation": "@book{przepiorkowski2012narodowy,\ntitle={Narodowy korpus j{\\k{e}}zyka polskiego},\nauthor={Przepi{'o}rkowski, Adam},\nyear={2012},\npublisher={Naukowe PWN}\n}\n", "homepage": "https://klejbenchmark.com/tasks/", "license": "GNU GPL v.3", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"num_classes": 6, "names": ["geogName", "noEntity", "orgName", "persName", "placeName", "time"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "nkjp_ner", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1612125, "num_examples": 15794, "dataset_name": "nkjp_ner"}, "test": {"name": "test", "num_bytes": 221092, "num_examples": 2058, "dataset_name": "nkjp_ner"}, "validation": {"name": "validation", "num_bytes": 196652, "num_examples": 1941, "dataset_name": "nkjp_ner"}}, "download_checksums": {"https://klejbenchmark.com/static/data/klej_nkjp-ner.zip": {"num_bytes": 821629, "checksum": "4b4573219731b198d43958e347dcd3e83654c89daa980c88de3bec8d628044ac"}}, "download_size": 821629, "post_processing_size": null, "dataset_size": 2029869, "size_in_bytes": 2851498}}
dummy/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ed7ae1eecf9fcc202b1bf145f80739eab760301e26398f897a88a9317f268a9
3
+ size 1294
nkjp-ner.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """NKJP-NER"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import csv
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """\
26
+ @book{przepiorkowski2012narodowy,
27
+ title={Narodowy korpus jezyka polskiego},
28
+ author={Przepi{\'o}rkowski, Adam},
29
+ year={2012},
30
+ publisher={Naukowe PWN}
31
+ }
32
+ """
33
+
34
+ _DESCRIPTION = """\
35
+ The NKJP-NER is based on a human-annotated part of National Corpus of Polish (NKJP). We extracted sentences with named entities of exactly one type. The task is to predict the type of the named entity.
36
+ """
37
+
38
+ _HOMEPAGE = "https://klejbenchmark.com/tasks/"
39
+
40
+ _LICENSE = "GNU GPL v.3"
41
+
42
+ _URLs = "https://klejbenchmark.com/static/data/klej_nkjp-ner.zip"
43
+
44
+
45
+ class NkjpNer(datasets.GeneratorBasedBuilder):
46
+ """NKJP-NER"""
47
+
48
+ VERSION = datasets.Version("1.1.0")
49
+
50
+ def _info(self):
51
+ return datasets.DatasetInfo(
52
+ description=_DESCRIPTION,
53
+ features=datasets.Features(
54
+ {
55
+ "sentence": datasets.Value("string"),
56
+ "target": datasets.ClassLabel(
57
+ names=[
58
+ "geogName",
59
+ "noEntity",
60
+ "orgName",
61
+ "persName",
62
+ "placeName",
63
+ "time",
64
+ ]
65
+ ),
66
+ }
67
+ ),
68
+ supervised_keys=None,
69
+ homepage=_HOMEPAGE,
70
+ license=_LICENSE,
71
+ citation=_CITATION,
72
+ )
73
+
74
+ def _split_generators(self, dl_manager):
75
+ """Returns SplitGenerators."""
76
+ data_dir = dl_manager.download_and_extract(_URLs)
77
+ return [
78
+ datasets.SplitGenerator(
79
+ name=datasets.Split.TRAIN,
80
+ gen_kwargs={
81
+ "filepath": os.path.join(data_dir, "train.tsv"),
82
+ "split": "train",
83
+ },
84
+ ),
85
+ datasets.SplitGenerator(
86
+ name=datasets.Split.TEST,
87
+ gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"},
88
+ ),
89
+ datasets.SplitGenerator(
90
+ name=datasets.Split.VALIDATION,
91
+ gen_kwargs={
92
+ "filepath": os.path.join(data_dir, "dev.tsv"),
93
+ "split": "dev",
94
+ },
95
+ ),
96
+ ]
97
+
98
+ def _generate_examples(self, filepath, split):
99
+ """ Yields examples. """
100
+ with open(filepath, encoding="utf-8") as f:
101
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
102
+ for id_, row in enumerate(reader):
103
+ yield id_, {
104
+ "sentence": row["sentence"],
105
+ "target": -1 if split == "test" else row["target"],
106
+ }