Datasets:
File size: 6,616 Bytes
026fd78 65068cd 026fd78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MetaLWOz: A Dataset of Multi-Domain Dialogues for the Fast Adaptation of Conversation Models"""
import json
import os
import datasets
_CITATION = """\
@InProceedings{shalyminov2020fast,
author = {Shalyminov, Igor and Sordoni, Alessandro and Atkinson, Adam and Schulz, Hannes},
title = {Fast Domain Adaptation For Goal-Oriented Dialogue Using A Hybrid Generative-Retrieval Transformer},
booktitle = {2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
year = {2020},
month = {April},
url = {https://www.microsoft.com/en-us/research/publication/fast-domain-adaptation-for-goal-oriented-dialogue-using-a
-hybrid-generative-retrieval-transformer/},
}
"""
_DESCRIPTION = """\
MetaLWOz: A Dataset of Multi-Domain Dialogues for the Fast Adaptation of Conversation Models. \
We introduce the Meta-Learning Wizard of Oz (MetaLWOz) dialogue dataset for developing fast adaptation methods for \
conversation models. This data can be used to train task-oriented dialogue models, specifically to develop methods to \
quickly simulate user responses with a small amount of data. Such fast-adaptation models fall into the research areas \
of transfer learning and meta learning. The dataset consists of 37,884 crowdsourced dialogues recorded between two \
human users in a Wizard of Oz setup, in which one was instructed to behave like a bot, and the other a true human \
user. The users are assigned a task belonging to a particular domain, for example booking a reservation at a \
particular restaurant, and work together to complete the task. Our dataset spans 47 domains having 227 tasks total. \
Dialogues are a minimum of 10 turns long.
"""
_HOMEPAGE = "https://www.microsoft.com/en-us/research/project/metalwoz/"
_LICENSE = "Microsoft Research Data License Agreement"
_URLs = {
"train": "https://download.microsoft.com/download/E/B/8/EB84CB1A-D57D-455F-B905-3ABDE80404E5/metalwoz-v1.zip",
"test": "https://download.microsoft.com/download/0/c/4/0c4a8893-cbf9-4a43-a44a-09bab9539234/metalwoz-test-v1.zip",
}
class MetaWoz(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="dialogues", description="The dataset of dialogues from various domains."),
datasets.BuilderConfig(
name="tasks", description="The metadata for tasks corresponding to dialogues from " "various domains."
),
]
DEFAULT_CONFIG_NAME = "dialogues"
def _info(self):
if self.config.name == "tasks":
features = datasets.Features(
{
"task_id": datasets.Value("string"),
"domain": datasets.Value("string"),
"bot_prompt": datasets.Value("string"),
"bot_role": datasets.Value("string"),
"user_prompt": datasets.Value("string"),
"user_role": datasets.Value("string"),
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("string"),
"user_id": datasets.Value("string"),
"bot_id": datasets.Value("string"),
"domain": datasets.Value("string"),
"task_id": datasets.Value("string"),
"turns": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
data_dir["test"] = dl_manager.extract(os.path.join(data_dir["test"], "dstc8_metalwoz_heldout.zip"))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir["test"]},
),
]
def _generate_examples(self, data_dir):
"""Yields examples."""
if self.config.name == "tasks":
filepath = os.path.join(data_dir, "tasks.txt")
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"task_id": data["task_id"],
"domain": data["domain"],
"bot_prompt": data["bot_prompt"],
"bot_role": data["bot_role"],
"user_prompt": data["user_prompt"],
"user_role": data["user_role"],
}
else:
id_ = -1
base_path = os.path.join(data_dir, "dialogues")
file_list = sorted(
[os.path.join(base_path, file) for file in os.listdir(base_path) if file.endswith(".txt")]
)
for filepath in file_list:
with open(filepath, encoding="utf-8") as f:
for row in f:
id_ += 1
data = json.loads(row)
yield id_, {
"id": data["id"],
"user_id": data["user_id"],
"bot_id": data["bot_id"],
"domain": data["domain"],
"task_id": data["task_id"],
"turns": data["turns"],
}
|