Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Size:
100K - 1M
ArXiv:
License:
File size: 8,794 Bytes
5cec56e 637daf8 5cec56e 637daf8 5cec56e 637daf8 5cec56e 637daf8 5cec56e 637daf8 60512e8 637daf8 5cec56e 637daf8 5cec56e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""MasakhaNER: Named Entity Recognition for African Languages"""
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{Adelani2022MasakhaNER2A,
title={MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition},
author={David Ifeoluwa Adelani and Graham Neubig and Sebastian Ruder and Shruti Rijhwani and Michael Beukman and Chester Palen-Michel and Constantine Lignos and Jesujoba Oluwadara Alabi and Shamsuddeen Hassan Muhammad and Peter Nabende and Cheikh M. Bamba Dione and Andiswa Bukula and Rooweither Mabuya and Bonaventure F. P. Dossou and Blessing K. Sibanda and Happy Buzaaba and Jonathan Mukiibi and Godson Kalipe and Derguene Mbaye and Amelia Taylor and Fatoumata Kabore and Chris C. Emezue and Anuoluwapo Aremu and Perez Ogayo and Catherine W. Gitau and Edwin Munkoh-Buabeng and Victoire Memdjokam Koagne and Allahsera Auguste Tapo and Tebogo Macucwa and Vukosi Marivate and Elvis Mboning and Tajuddeen R. Gwadabe and Tosin P. Adewumi and Orevaoghene Ahia and Joyce Nakatumba-Nabende and Neo L. Mokono and Ignatius M Ezeani and Chiamaka Ijeoma Chukwuneke and Mofetoluwa Adeyemi and Gilles Hacheme and Idris Abdulmumin and Odunayo Ogundepo and Oreen Yousuf and Tatiana Moteu Ngoli and Dietrich Klakow},
journal={ArXiv},
year={2022},
volume={abs/2210.12391}
}
"""
_DESCRIPTION = """\
MasakhaNER 2.0 is the largest publicly available high-quality dataset for named entity recognition (NER) in 20 African languages.
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities.
Example:
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .
MasakhaNER is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for 20 African languages:
- Bambara (bam)
- Ghomala (bbj)
- Ewe (ewe)
- Fon (fon)
- Hausa (hau)
- Igbo (ibo)
- Kinyarwanda (kin)
- Luganda (lug)
- Dholuo (luo)
- Mossi (mos)
- Chichewa (nya)
- Nigerian Pidgin
- chShona (sna)
- Kiswahili (swą)
- Setswana (tsn)
- Twi (twi)
- Wolof (wol)
- isiXhosa (xho)
- Yorùbá (yor)
- isiZulu (zul)
The train/validation/test sets are available for all the ten languages.
For more details see https://arxiv.org/abs/2103.11811
"""
_URL = "https://github.com/masakhane-io/masakhane-ner/raw/main/MasakhaNER2.0/data/"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "dev.txt"
_TEST_FILE = "test.txt"
class Masakhaner2Config(datasets.BuilderConfig):
"""BuilderConfig for Masakhaner2"""
def __init__(self, **kwargs):
"""BuilderConfig for Masakhaner2.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Masakhaner2Config, self).__init__(**kwargs)
class Masakhaner2(datasets.GeneratorBasedBuilder):
"""Masakhaner2 dataset."""
BUILDER_CONFIGS = [
Masakhaner2Config(name="bam", version=datasets.Version("1.0.0"), description="Masakhaner2 Bambara dataset"),
Masakhaner2Config(name="bbj", version=datasets.Version("1.0.0"), description="Masakhaner2 Ghomala dataset"),
Masakhaner2Config(name="ewe", version=datasets.Version("1.0.0"), description="Masakhaner2 Ewe dataset"),
Masakhaner2Config(name="fon", version=datasets.Version("1.0.0"), description="Masakhaner2 Fon dataset"),
Masakhaner2Config(name="hau", version=datasets.Version("1.0.0"), description="Masakhaner2 Hausa dataset"),
Masakhaner2Config(name="ibo", version=datasets.Version("1.0.0"), description="Masakhaner2 Igbo dataset"),
Masakhaner2Config(name="kin", version=datasets.Version("1.0.0"), description="Masakhaner2 Kinyarwanda dataset"),
Masakhaner2Config(name="lug", version=datasets.Version("1.0.0"), description="Masakhaner2 Luganda dataset"),
Masakhaner2Config(name="luo", version=datasets.Version("1.0.0"), description="Masakhaner2 Luo dataset"),
Masakhaner2Config(name="mos", version=datasets.Version("1.0.0"), description="Masakhaner2 Mossi dataset"),
Masakhaner2Config(name="nya", version=datasets.Version("1.0.0"), description="Masakhaner2 Chichewa` dataset"),
Masakhaner2Config(
name="pcm", version=datasets.Version("1.0.0"), description="Masakhaner Nigerian-Pidgin dataset"
),
Masakhaner2Config(name="sna", version=datasets.Version("1.0.0"), description="Masakhaner2 Shona dataset"),
Masakhaner2Config(name="swa", version=datasets.Version("1.0.0"), description="Masakhaner2 Swahili dataset"),
Masakhaner2Config(name="tsn", version=datasets.Version("1.0.0"), description="Masakhaner2 Setswana dataset"),
Masakhaner2Config(name="twi", version=datasets.Version("1.0.0"), description="Masakhaner2 Twi dataset"),
Masakhaner2Config(name="wol", version=datasets.Version("1.0.0"), description="Masakhaner2 Wolof dataset"),
Masakhaner2Config(name="xho", version=datasets.Version("1.0.0"), description="Masakhaner2 Xhosa dataset"),
Masakhaner2Config(name="yor", version=datasets.Version("1.0.0"), description="Masakhaner2 Yoruba dataset"),
Masakhaner2Config(name="zul", version=datasets.Version("1.0.0"), description="Masakhaner2 Zulu dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
"B-DATE",
"I-DATE",
]
)
),
}
),
supervised_keys=None,
homepage="https://arxiv.org/abs/2210.12391",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{self.config.name}/{_TRAINING_FILE}",
"dev": f"{_URL}{self.config.name}/{_DEV_FILE}",
"test": f"{_URL}{self.config.name}/{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
# Masakhaner tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
# last example
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
|