Datasets:
File size: 5,370 Bytes
44551ff f5b5171 44551ff bbcd3c1 44551ff 01add28 44551ff bbcd3c1 44551ff 20a75c8 44551ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
"""AfriQA GOLD Passages dataset."""
import json
import os
from textwrap import dedent
import datasets
_HOMEPAGE = "https://github.com/masakhane-io/afriqa"
_DESCRIPTION = """\
AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
AfriQA is the first cross-lingual question-answering (QA) dataset with a focus on African languages.
The dataset includes over 12,000 XOR QA examples across 10 African languages, making it an invaluable resource for developing more equitable QA technology.
"""
_CITATION = """\
"""
_URL = "https://github.com/masakhane-io/afriqa/raw/main/data/gold_passages/"
_LANG_2_PIVOT = {
"bem": "en",
"fon": "fr",
"hau": "en",
"ibo": "en",
"kin": "en",
"swa": "en",
"twi": "en",
"yor": "en",
"zul": "en",
}
_LANG_2_SPLITS = {
"bem": ["train", "dev", "test"],
"fon": ["train", "dev", "test"],
"hau": ["train", "dev", "test"],
"ibo": ["train", "dev", "test"],
"kin": ["train", "dev", "test"],
"swa": ["test"],
"twi": ["train", "dev", "test"],
"yor": ["train", "test"],
"zul": ["train", "dev", "test"],
}
class AfriQAConfig(datasets.BuilderConfig):
"""BuilderConfig for AfriQA"""
def __init__(self, **kwargs):
"""BuilderConfig for AfriQA.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(AfriQAConfig, self).__init__(**kwargs)
class AfriQA(datasets.GeneratorBasedBuilder):
"""AfriQA dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
AfriQAConfig(name="bem", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Bemba dataset"),
AfriQAConfig(name="fon", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Fon dataset"),
AfriQAConfig(name="hau", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Hausa dataset"),
AfriQAConfig(name="ibo", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Igbo dataset"),
AfriQAConfig(name="kin", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Kinyarwanda dataset"),
AfriQAConfig(name="swa", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Swahili dataset"),
AfriQAConfig(name="twi", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Twi dataset"),
AfriQAConfig(name="wol", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Wolof dataset"),
AfriQAConfig(name="yor", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Yoruba dataset"),
AfriQAConfig(name="zul", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Zulu dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"question_lang": datasets.Value("string"),
"question_translated": datasets.Value("string"),
"context": datasets.Value("string"),
"title": datasets.Value("string"),
"answer_pivot": datasets.Value("string"),
"answer_start": datasets.Value("string"),
"answer_lang": datasets.Value("string"),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {}
for split in _LANG_2_SPLITS[self.config.name]:
urls_to_download[split] = f"{_URL}{self.config.name}/gold_span_passages.afriqa.{self.config.name}.{_LANG_2_PIVOT[self.config.name]}.{split}.json"
downloaded_files = dl_manager.download_and_extract(urls_to_download)
splits_list = []
for split in _LANG_2_SPLITS[self.config.name]:
if split == "train":
splits_list.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}))
elif split == "dev":
splits_list.append(datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}))
elif split == "test":
splits_list.append(datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}))
return splits_list
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8-sig") as f:
for _, row in enumerate(f):
example = json.loads(row)
_id = example["id"]
if not example["context"] or not example["answer_pivot"]["answer_start"]:
continue
yield _id, {
"question_lang": example["question_lang"],
"question_translated": example["question_translated"],
"context": example["context"],
"title": example["title"],
"answer_pivot": example["answer_pivot"]["text"][0],
"answer_start": example["answer_pivot"]["answer_start"][0],
"answer_lang": example["answer_lang"],
} |