File size: 1,445 Bytes
db4310c 2ec5b5d db4310c 2ec5b5d e10adf3 2ec5b5d 2ac0b5f 756edc9 2ec5b5d e10adf3 2ec5b5d c03319b 2ec5b5d c03319b 2ec5b5d 2ac0b5f 2ec5b5d 2ac0b5f 2ec5b5d c226ff5 11218f3 e10adf3 c226ff5 e10adf3 03b2ea6 e10adf3 03b2ea6 c226ff5 e10adf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- theorem-proving
- math
- lean
---
## [miniCTX: Neural Theorem Proving with (Long-)Contexts]()
Lean 4 tactic prediction examples extracted from Mathlib.
These examples have **not** been formatted for instruction tuning (including data splits).
Please see `l3lab/ntp-mathlib-instruct-*` for datasets with instruction tuning examples.
### Version
Generated using `ntptoolkit`'s `ntp-training-data`.
It used the following config for `ntp-training-data`:
```json
{
"repo": "https://github.com/leanprover-community/mathlib4",
"commit": "cf8e23a62939ed7cc530fbb68e83539730f32f86",
"lean": "leanprover/lean4:v4.4.0",
"name": "mathlib",
"import_file": "Mathlib.lean",
"imports": ["Mathlib"]
}
```
### Example usage:
```bash
ds = datasets.load_dataset('l3lab/ntp-mathlib')
print(len(ds['train']))
# ==> 307049
```
### Format:
```json
{
'state': 'proof state',
'srcUpToTactic': 'source up to tactic invocation',
'nextTactic': 'tactic',
'declUpToTactic': 'declariation up to tactic invocation',
'declId': 'unique ID for declaration',
'decl': 'declaration',
'file_tag': 'file ID'
}
```
#### Citation
Please cite:
```
@misc{hu2024minictx,
title={miniCTX: Neural Theorem Proving with (Long-)Contexts},
author={Jiewen Hu and Thomas Zhu and Sean Welleck},
year={2024},
eprint={2408.03350},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2408.03350},
}
``` |