--- language: - en tags: - clouds - sentinel-2 - image-segmentation - deep-learning - remote-sensing pretty_name: cloudsen12 --- # cloudsen12 ***``A dataset about clouds from Sentinel-2``*** CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge cloud detection algorithms. CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our paper: CloudSEN12 - a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2. **ML-STAC Snippet** ```python import mlstac secret = 'https://huggingface.co./datasets/jfloresf/mlstac-demo/resolve/main/main.json' train_db = mlstac.load(secret, framework='torch', stream=True, device='cpu') ``` **Sensor: Sentinel 2 - MSI** **ML-STAC Task: TensorToTensor, TensorSegmentation** **Data raw repository: [http://www.example.com/](http://www.example.com/)** **Dataset discussion: [https://github.com/IPL-UV/ML-STAC/discussions/2](https://github.com/IPL-UV/ML-STAC/discussions/2)** **Review mean score: 5.0** **Split_strategy: random** **Paper: [https://www.nature.com/articles/s41597-022-01878-2](https://www.nature.com/articles/s41597-022-01878-2)** ## Data Providers |Name|Role|URL| | :---: | :---: | :---: | |Image & Signal Processing|['host']|https://isp.uv.es/| |ESA|['producer']|https://www.esa.int/| ## Curators |Name|Organization|URL| | :---: | :---: | :---: | |Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/| ## Reviewers |Name|Organization|URL|Score| | :---: | :---: | :---: | :---: | |Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/|5| ## Labels |Name|Value| | :---: | :---: | |clear|0| |thick-cloud|1| |thin-cloud|2| |cloud-shadow|3| ## Dimensions ### input |Axis|Name|Description| | :---: | :---: | :---: | |0|C|Channels - Spectral bands| |1|H|Height| |2|W|Width| ### target |Axis|Name|Description| | :---: | :---: | :---: | |0|C|Hand-crafted labels| |1|H|Height| |2|W|Width| ## Spectral Bands |Name|Common Name|Description|Center Wavelength|Full Width Half Max|Index| | :---: | :---: | :---: | :---: | :---: | :---: | |B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0| |B02|blue|Band 2 - Blue - 10m|496.5|53.0|1| |B03|green|Band 3 - Green - 10m|560.0|34.0|2| |B04|red|Band 4 - Red - 10m|664.5|29.0|3| |B05|red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4| |B06|red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5| |B07|red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6| |B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7| |B8A|red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8| |B09|water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9| |B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10| |B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11| |B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|