import re from copy import deepcopy from typing import Dict, Optional import fishfarm import torch import torch.utils import vllm def load_hf_params_to_vllm(param: Dict, llm: vllm.LLM) -> None: """Load weights from HF transformer model to vLLM model.""" model = llm.llm_engine.model_executor.driver_worker.model_runner.model num_layers = model.config.num_hidden_layers # Load embeddings layer weights. model_param = model.get_parameter("model.embed_tokens.weight") model_param.copy_( param["model.embed_tokens.weight"][: model_param.shape[0]] .to(model_param.dtype) .to(model_param.device) ) model_param = model.get_parameter("lm_head.weight") model_param.copy_( param["lm_head.weight"][: model_param.shape[0]] .to(model_param.dtype) .to(model_param.device) ) # Load the final layernorm weights. model_param = model.get_parameter("model.norm.weight") model_param.copy_( param["model.norm.weight"].to(model_param.dtype).to(model_param.device) ) for i in range(num_layers): # Load qkv_proj weights. model_param = model.get_parameter(f"model.layers.{i}.self_attn.qkv_proj.weight") model_param.copy_( torch.cat( [ param[f"model.layers.{i}.self_attn.q_proj.weight"], param[f"model.layers.{i}.self_attn.k_proj.weight"], param[f"model.layers.{i}.self_attn.v_proj.weight"], ], dim=0, ) .to(model_param.dtype) .to(model_param.device) ) # Load gate_up_proj weights. model_param = model.get_parameter(f"model.layers.{i}.mlp.gate_up_proj.weight") model_param.copy_( torch.cat( [ param[f"model.layers.{i}.mlp.gate_proj.weight"], param[f"model.layers.{i}.mlp.up_proj.weight"], ], dim=0, ) .to(model_param.dtype) .to(model_param.device) ) # Load o_proj and down_proj weights. model_param = model.get_parameter(f"model.layers.{i}.self_attn.o_proj.weight") model_param.copy_( param[f"model.layers.{i}.self_attn.o_proj.weight"] .to(model_param.dtype) .to(model_param.device) ) model_param = model.get_parameter(f"model.layers.{i}.mlp.down_proj.weight") model_param.copy_( param[f"model.layers.{i}.mlp.down_proj.weight"] .to(model_param.dtype) .to(model_param.device) ) # Load layer_norm weights. model_param = model.get_parameter(f"model.layers.{i}.input_layernorm.weight") model_param.copy_( param[f"model.layers.{i}.input_layernorm.weight"] .to(model_param.dtype) .to(model_param.device) ) model_param = model.get_parameter( f"model.layers.{i}.post_attention_layernorm.weight" ) model_param.copy_( param[f"model.layers.{i}.post_attention_layernorm.weight"] .to(model_param.dtype) .to(model_param.device) ) def eval_model(vllm_model, evaluator, ix=None): result = evaluator.evaluate(vllm_model, sample_ids=ix) return result def compose_new_params( policy, param_name, decomposed_params, learnable_params, ): """Compose new parameters from decomposed parameters.""" mm = policy.get_mask(learnable_params[param_name]) return ( decomposed_params[f"{param_name}.U"] @ torch.diag_embed(decomposed_params[f"{param_name}.S"] * mm) @ decomposed_params[f"{param_name}.V"].T ) * ( decomposed_params[f"{param_name}.S"].sum() / (decomposed_params[f"{param_name}.S"] * mm).sum() ) @torch.no_grad() def forward(policy, model, base_params, decomposed_params, learnable_params): """Forward pass.""" new_params = {} for k in base_params: if "mlp" in k: new_params[k] = compose_new_params( policy, k, decomposed_params, learnable_params ) model.get_parameter(k).copy_(new_params[k]) else: new_params[k] = base_params[k] return new_params @torch.no_grad() def load_base_params( model, base_params, ): for k in base_params: if "mlp" in k: model.get_parameter(k).copy_(base_params[k].cuda()) def backward( policy, model, base_params, decomposed_params, learnable_params, ): """Backward pass.""" keys_to_backprop = [k for k in base_params if "mlp" in k] last_key = keys_to_backprop[-1] for k in keys_to_backprop[:-1]: compose_new_params(policy, k, decomposed_params, learnable_params).backward( model.get_parameter(k).grad, retain_graph=True ) # release graph compose_new_params(policy, last_key, decomposed_params, learnable_params).backward( model.get_parameter(last_key).grad, retain_graph=False ) def classify_samples(vllm_model, test_eval): """Classify samples.""" CLASSIFICATION_PROMPT = """ # Analyze the given question and classify it into one of four categories: 'code', 'math', 'reasoning' or 'other'. Follow these guidelines: 1. Code: Questions asking for programming solutions, functions, algorithms. Often includes specific programming terms, language syntax, or data structures. 2. Math: Questions involving mathematical calculations, formulas, statistics. Often includes numbers, equations, or mathematical operations. 3. Reasoning: Questions requiring logical thinking, application of scientific knowledge, or critical analysis of information. Often presents statements that need evaluation based on general understanding. 4. Other: Questions not clearly fit into above categories. Instructions: - Consider the primary focus, skills, and knowledge required to answer the question. - If a question spans multiple categories, choose the most dominant one. - Provide your final classification within \\boxed{} notation. Example: \\boxed{reasoning} Format your response as follows: Classification: \\boxed{category} """ def extract_classification(text: str) -> Optional[str]: """ Extract the classification from the model's output using regex. """ match = re.search(r"\\boxed{([^}]*)}", text) return match.group(1) if match else None # Identify the key in the samples that contains the problem text problem_key = None for key in ("problem", "question", "instruction"): if ( hasattr(test_eval.samples[0], key) and getattr(test_eval.samples[0], key) is not None ): problem_key = key break assert problem_key is not None, "Could not find problem text in the samples" # Prepare classification requests classification_requests = [ fishfarm.models.GenerationRequest( messages=[ fishfarm.Message("system", CLASSIFICATION_PROMPT), fishfarm.Message("user", getattr(sample, problem_key)), ] ) for sample in test_eval.samples ] # Generate classifications using the model model_outputs = vllm_model.generate(classification_requests) # Process results and update samples classified_samples = [] for sample, result in zip(test_eval.samples, model_outputs): prediction = extract_classification(result.generation) if prediction not in ["code", "math", "reasoning"]: prediction = "other" sample.expert_label = prediction classified_samples.append(sample) return classified_samples def eval_model_experts_prompt_based( vllm_model, evaluator, experts_path_dict, policy, model, base_params, decomposed_params, task_metric, ): """Evaluate the model using expert models and prompt-based classification.""" results_by_expert: Dict[str, Dict] = {} # Classify all test samples classified_samples = classify_samples(vllm_model, evaluator) # Evaluate samples for each expert model for expert_label, expert_model_path in experts_path_dict.items(): # Filter samples for current expert expert_samples = [ sample for sample in classified_samples if sample.expert_label == expert_label ] if not expert_samples: continue # Update test evaluation with filtered samples evaluator.samples = expert_samples # Load and apply expert model parameters if available if expert_model_path: policy.load_state_dict(torch.load(expert_model_path)) expert_params = policy.get_learnable_params() updated_params = forward( policy=policy, model=model, base_params=base_params, decomposed_params=decomposed_params, learnable_params=expert_params, ) load_hf_params_to_vllm(updated_params, vllm_model.llm) # Evaluate current expert model evaluation_results = eval_model(vllm_model, evaluator) # Store results for current expert results_by_expert[expert_label] = { "num_samples": len(expert_samples), "test_acc": evaluation_results.aggregate_metrics[task_metric], } # Compute the overall accuracy. data_dict = deepcopy(results_by_expert) data_dict["final_test_acc"] = 0.0 for label in results_by_expert.keys(): data_dict["final_test_acc"] += ( results_by_expert[label]["test_acc"] * results_by_expert[label]["num_samples"] ) data_dict["final_test_acc"] /= len(classified_samples) return data_dict