Datasets:

Modalities:
Audio
Text
Formats:
parquet
Size:
< 1K
Libraries:
Datasets
pandas
sanchit-gandhi commited on
Commit
5be9148
·
1 Parent(s): 7d6b249

convert to parquet

Browse files
README.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ config_name: clean
4
+ features:
5
+ - name: file
6
+ dtype: string
7
+ - name: audio
8
+ dtype:
9
+ audio:
10
+ sampling_rate: 16000
11
+ - name: text
12
+ dtype: string
13
+ - name: speaker_id
14
+ dtype: int64
15
+ - name: chapter_id
16
+ dtype: int64
17
+ - name: id
18
+ dtype: string
19
+ splits:
20
+ - name: validation
21
+ num_bytes: 9677021.0
22
+ num_examples: 73
23
+ download_size: 9192059
24
+ dataset_size: 9677021.0
25
+ configs:
26
+ - config_name: clean
27
+ data_files:
28
+ - split: validation
29
+ path: clean/validation-*
30
+ ---
clean/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e69a06fa5edc90921e5e7e39a7084881f8b3ed9c805c574f4f39c6fde27c603
3
+ size 9192059
librispeech_asr.py.lock DELETED
File without changes
librispeech_asr_dummy.py DELETED
@@ -1,137 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Librispeech automatic speech recognition dataset."""
18
-
19
- from __future__ import absolute_import, division, print_function
20
-
21
- import glob
22
- import os
23
-
24
- import datasets
25
-
26
-
27
- _CITATION = """\
28
- @inproceedings{panayotov2015librispeech,
29
- title={Librispeech: an ASR corpus based on public domain audio books},
30
- author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
31
- booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
32
- pages={5206--5210},
33
- year={2015},
34
- organization={IEEE}
35
- }
36
- """
37
-
38
- _DESCRIPTION = """\
39
- LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
40
- prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
41
- audiobooks from the LibriVox project, and has been carefully segmented and aligned.
42
-
43
- Note that in order to limit the required storage for preparing this dataset, the audio
44
- is stored in the .flac format and is not converted to a float32 array. To convert, the audio
45
- file to a float32 array, please make use of the `.map()` function as follows:
46
-
47
-
48
- ```python
49
- import soundfile as sf
50
-
51
- def map_to_array(batch):
52
- speech_array, _ = sf.read(batch["file"])
53
- batch["speech"] = speech_array
54
- return batch
55
-
56
- dataset = dataset.map(map_to_array, remove_columns=["file"])
57
- ```
58
- """
59
-
60
- _URL = "http://www.openslr.org/12"
61
- _DL_URL = "https://s3.amazonaws.com/datasets.huggingface.co/librispeech_asr/2.1.0/"
62
- _DL_URL = "https://s3.amazonaws.com/datasets.huggingface.co/librispeech_asr/2.1.0/"
63
-
64
- _DL_URLS = {
65
- "clean": {
66
- "dev": _DL_URL + "dev_clean.tar.gz",
67
- }
68
- }
69
-
70
-
71
- class LibrispeechASRConfig(datasets.BuilderConfig):
72
- """BuilderConfig for LibriSpeechASR."""
73
-
74
- def __init__(self, **kwargs):
75
- """
76
- Args:
77
- data_dir: `string`, the path to the folder containing the files in the
78
- downloaded .tar
79
- citation: `string`, citation for the data set
80
- url: `string`, url for information about the data set
81
- **kwargs: keyword arguments forwarded to super.
82
- """
83
- super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
84
-
85
-
86
- class LibrispeechASR(datasets.GeneratorBasedBuilder):
87
- """Librispeech dataset."""
88
-
89
- BUILDER_CONFIGS = [
90
- LibrispeechASRConfig(name="clean", description="'Clean' speech."),
91
- LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
92
- ]
93
-
94
- def _info(self):
95
- return datasets.DatasetInfo(
96
- description=_DESCRIPTION,
97
- features=datasets.Features(
98
- {
99
- "file": datasets.Value("string"),
100
- "audio": datasets.features.Audio(sampling_rate=16_000),
101
- "text": datasets.Value("string"),
102
- "speaker_id": datasets.Value("int64"),
103
- "chapter_id": datasets.Value("int64"),
104
- "id": datasets.Value("string"),
105
- }
106
- ),
107
- supervised_keys=("speech", "text"),
108
- homepage=_URL,
109
- citation=_CITATION,
110
- )
111
-
112
- def _split_generators(self, dl_manager):
113
- archive_path = dl_manager.download_and_extract(_DL_URLS[self.config.name])
114
- return [
115
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path["dev"], "split_name": f"dev_{self.config.name}"}),
116
- ]
117
-
118
- def _generate_examples(self, archive_path, split_name):
119
- """Generate examples from a Librispeech archive_path."""
120
- transcripts_glob = os.path.join(archive_path, split_name, "*/*/*.txt")
121
- for transcript_file in sorted(glob.glob(transcripts_glob)):
122
- path = os.path.dirname(transcript_file)
123
- with open(os.path.join(path, transcript_file)) as f:
124
- for line in f:
125
- line = line.strip()
126
- key, transcript = line.split(" ", 1)
127
- audio_file = f"{key}.flac"
128
- speaker_id, chapter_id = [int(el) for el in key.split("-")[:2]]
129
- example = {
130
- "id": key,
131
- "speaker_id": speaker_id,
132
- "chapter_id": chapter_id,
133
- "file": os.path.join(path, audio_file),
134
- "audio": os.path.join(path, audio_file),
135
- "text": transcript,
136
- }
137
- yield key, example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
librispeech_asr_dummy.py.lock DELETED
File without changes