sanchit-gandhi
commited on
Commit
·
5be9148
1
Parent(s):
7d6b249
convert to parquet
Browse files- README.md +30 -0
- clean/validation-00000-of-00001.parquet +3 -0
- librispeech_asr.py.lock +0 -0
- librispeech_asr_dummy.py +0 -137
- librispeech_asr_dummy.py.lock +0 -0
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
config_name: clean
|
4 |
+
features:
|
5 |
+
- name: file
|
6 |
+
dtype: string
|
7 |
+
- name: audio
|
8 |
+
dtype:
|
9 |
+
audio:
|
10 |
+
sampling_rate: 16000
|
11 |
+
- name: text
|
12 |
+
dtype: string
|
13 |
+
- name: speaker_id
|
14 |
+
dtype: int64
|
15 |
+
- name: chapter_id
|
16 |
+
dtype: int64
|
17 |
+
- name: id
|
18 |
+
dtype: string
|
19 |
+
splits:
|
20 |
+
- name: validation
|
21 |
+
num_bytes: 9677021.0
|
22 |
+
num_examples: 73
|
23 |
+
download_size: 9192059
|
24 |
+
dataset_size: 9677021.0
|
25 |
+
configs:
|
26 |
+
- config_name: clean
|
27 |
+
data_files:
|
28 |
+
- split: validation
|
29 |
+
path: clean/validation-*
|
30 |
+
---
|
clean/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e69a06fa5edc90921e5e7e39a7084881f8b3ed9c805c574f4f39c6fde27c603
|
3 |
+
size 9192059
|
librispeech_asr.py.lock
DELETED
File without changes
|
librispeech_asr_dummy.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Librispeech automatic speech recognition dataset."""
|
18 |
-
|
19 |
-
from __future__ import absolute_import, division, print_function
|
20 |
-
|
21 |
-
import glob
|
22 |
-
import os
|
23 |
-
|
24 |
-
import datasets
|
25 |
-
|
26 |
-
|
27 |
-
_CITATION = """\
|
28 |
-
@inproceedings{panayotov2015librispeech,
|
29 |
-
title={Librispeech: an ASR corpus based on public domain audio books},
|
30 |
-
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
|
31 |
-
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
|
32 |
-
pages={5206--5210},
|
33 |
-
year={2015},
|
34 |
-
organization={IEEE}
|
35 |
-
}
|
36 |
-
"""
|
37 |
-
|
38 |
-
_DESCRIPTION = """\
|
39 |
-
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
|
40 |
-
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
|
41 |
-
audiobooks from the LibriVox project, and has been carefully segmented and aligned.
|
42 |
-
|
43 |
-
Note that in order to limit the required storage for preparing this dataset, the audio
|
44 |
-
is stored in the .flac format and is not converted to a float32 array. To convert, the audio
|
45 |
-
file to a float32 array, please make use of the `.map()` function as follows:
|
46 |
-
|
47 |
-
|
48 |
-
```python
|
49 |
-
import soundfile as sf
|
50 |
-
|
51 |
-
def map_to_array(batch):
|
52 |
-
speech_array, _ = sf.read(batch["file"])
|
53 |
-
batch["speech"] = speech_array
|
54 |
-
return batch
|
55 |
-
|
56 |
-
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
57 |
-
```
|
58 |
-
"""
|
59 |
-
|
60 |
-
_URL = "http://www.openslr.org/12"
|
61 |
-
_DL_URL = "https://s3.amazonaws.com/datasets.huggingface.co/librispeech_asr/2.1.0/"
|
62 |
-
_DL_URL = "https://s3.amazonaws.com/datasets.huggingface.co/librispeech_asr/2.1.0/"
|
63 |
-
|
64 |
-
_DL_URLS = {
|
65 |
-
"clean": {
|
66 |
-
"dev": _DL_URL + "dev_clean.tar.gz",
|
67 |
-
}
|
68 |
-
}
|
69 |
-
|
70 |
-
|
71 |
-
class LibrispeechASRConfig(datasets.BuilderConfig):
|
72 |
-
"""BuilderConfig for LibriSpeechASR."""
|
73 |
-
|
74 |
-
def __init__(self, **kwargs):
|
75 |
-
"""
|
76 |
-
Args:
|
77 |
-
data_dir: `string`, the path to the folder containing the files in the
|
78 |
-
downloaded .tar
|
79 |
-
citation: `string`, citation for the data set
|
80 |
-
url: `string`, url for information about the data set
|
81 |
-
**kwargs: keyword arguments forwarded to super.
|
82 |
-
"""
|
83 |
-
super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
|
84 |
-
|
85 |
-
|
86 |
-
class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
87 |
-
"""Librispeech dataset."""
|
88 |
-
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
LibrispeechASRConfig(name="clean", description="'Clean' speech."),
|
91 |
-
LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
|
92 |
-
]
|
93 |
-
|
94 |
-
def _info(self):
|
95 |
-
return datasets.DatasetInfo(
|
96 |
-
description=_DESCRIPTION,
|
97 |
-
features=datasets.Features(
|
98 |
-
{
|
99 |
-
"file": datasets.Value("string"),
|
100 |
-
"audio": datasets.features.Audio(sampling_rate=16_000),
|
101 |
-
"text": datasets.Value("string"),
|
102 |
-
"speaker_id": datasets.Value("int64"),
|
103 |
-
"chapter_id": datasets.Value("int64"),
|
104 |
-
"id": datasets.Value("string"),
|
105 |
-
}
|
106 |
-
),
|
107 |
-
supervised_keys=("speech", "text"),
|
108 |
-
homepage=_URL,
|
109 |
-
citation=_CITATION,
|
110 |
-
)
|
111 |
-
|
112 |
-
def _split_generators(self, dl_manager):
|
113 |
-
archive_path = dl_manager.download_and_extract(_DL_URLS[self.config.name])
|
114 |
-
return [
|
115 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path["dev"], "split_name": f"dev_{self.config.name}"}),
|
116 |
-
]
|
117 |
-
|
118 |
-
def _generate_examples(self, archive_path, split_name):
|
119 |
-
"""Generate examples from a Librispeech archive_path."""
|
120 |
-
transcripts_glob = os.path.join(archive_path, split_name, "*/*/*.txt")
|
121 |
-
for transcript_file in sorted(glob.glob(transcripts_glob)):
|
122 |
-
path = os.path.dirname(transcript_file)
|
123 |
-
with open(os.path.join(path, transcript_file)) as f:
|
124 |
-
for line in f:
|
125 |
-
line = line.strip()
|
126 |
-
key, transcript = line.split(" ", 1)
|
127 |
-
audio_file = f"{key}.flac"
|
128 |
-
speaker_id, chapter_id = [int(el) for el in key.split("-")[:2]]
|
129 |
-
example = {
|
130 |
-
"id": key,
|
131 |
-
"speaker_id": speaker_id,
|
132 |
-
"chapter_id": chapter_id,
|
133 |
-
"file": os.path.join(path, audio_file),
|
134 |
-
"audio": os.path.join(path, audio_file),
|
135 |
-
"text": transcript,
|
136 |
-
}
|
137 |
-
yield key, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
librispeech_asr_dummy.py.lock
DELETED
File without changes
|