// Quarantine // Solution by Jacob Plachta #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x < 0 ? -x : x); } template T Sqr(T x) { return(x * x); } string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); } const int INF = (int)1e9; const LD EPS = 1e-12; const LD PI = acos(-1.0); #define GETCHAR getchar_unlocked bool Read(int& x) { char c, r = 0, n = 0; x = 0; for (;;) { c = GETCHAR(); if ((c < 0) && (!r)) return(0); if ((c == '-') && (!r)) n = 1; else if ((c >= '0') && (c <= '9')) x = x * 10 + c - '0', r = 1; else if (r) break; } if (n) x = -x; return(1); } #define LIM 1000001 #define MOD 1000000007 #define MCPR pair int N, K, A, B; char S[LIM]; int E[LIM], C[LIM]; int pi, P[LIM], L[LIM], R[LIM]; vector ch[LIM]; MCPR preM[LIM], sufM[LIM], subM[LIM]; void ReadSeq(int* V, int N, int K) { int i, A, B, C; Fox1(i, K) Read(V[i]); Read(A), Read(B), Read(C); FoxI(i, K + 1, N - 1) V[i] = ((LL)A * V[i - 2] + (LL)B * V[i - 1] + C) % i + 1; } // traverses the tree in pre-order, numbering nodes and storing their subtrees' ranges void Pre(int i) { P[pi] = i; L[i] = pi++; for (auto j : ch[i]) Pre(j); R[i] = pi - 1; } // returns number of "*" nodes reachable from i in its subtree int CountC(int i) { if (S[i] == '#') return(0); int c = 1; for (auto j : ch[i]) c += CountC(j); return(c); } // sets C values of all "*" nodes reachable from i in its subtree void SetC(int i, int c) { if (S[i] == '#') return; C[i] = c; for (auto j : ch[i]) SetC(j, c); } // combines two max/count pairs MCPR Comb(MCPR a, MCPR b) { LL m = max(a.x, b.x); return(mp(m, (a.x == m ? a.y : 0) + (b.x == m ? b.y : 0))); } MCPR ProcessCase() { int i, j; // init Fill(C, 0); Fox(i, N) ch[i].clear(); // input, and generate E values Read(N), Read(K); scanf("%s", &S); ReadSeq(E, N, K); Fox1(i, N - 1) { E[i]--; ch[E[i]].pb(i); } // number nodes in pre-order pi = 0; Pre(0); // floodfill to find connected * regions int nr = 0; LL base = 0; Fox(i, N) if (S[i] == '*' && !C[i]) { nr++; int c = CountC(i); SetC(i, c); base += (LL)c * (c - 1) / 2; } // precompute prefix, suffix, and subtree C value max/count pairs preM[0] = sufM[N] = mp(-1, 0); Fox(i, N) preM[i + 1] = Comb(preM[i], mp(C[P[i]], 1)); FoxR(i, N) { sufM[i] = Comb(sufM[i + 1], mp(C[P[i]], 1)); subM[i] = mp(C[i], 1); for (auto j : ch[i]) subM[i] = Comb(subM[i], subM[j]); } // consider each possible edge to delete MCPR ans = mp(-1, 0); Fox1(i, N - 1) if (S[i] == '#' || S[E[i]] == '#' || nr == 1) { // compute max/count pairs inside/outside i's subtree MCPR in, out; if (nr == 1 && (S[i] == '#' || S[E[i]] == '#')) { // max values are irrelevant in this case in = mp(0, R[i] - L[i] + 1); out = mp(0, N - in.y); } else { in = subM[i]; out = Comb(preM[L[i]], sufM[R[i] + 1]); } MCPR cur = mp(base, in.y * out.y); if (nr > 1) cur.x += in.x * out.x; ans = Comb(ans, cur); } return(ans); } int main() { int T, t; Read(T); Fox1(t, T) { MCPR ans = ProcessCase(); printf("Case #%d: %lld %lld\n", t, ans.x, ans.y); } return(0); }