// Somebody Else's Problem // Solution by Jacob Plachta #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (auto i:s) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x < 0 ? -x : x); } template T Sqr(T x) { return(x * x); } string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); } const int INF = (int)1e9; const LD EPS = 1e-12; const LD PI = acos(-1.0); #define GETCHAR getchar_unlocked bool Read(int& x) { char c, r = 0, n = 0; x = 0; for (;;) { c = GETCHAR(); if ((c < 0) && (!r)) return(0); if ((c == '-') && (!r)) n = 1; else if ((c >= '0') && (c <= '9')) x = x * 10 + c - '0', r = 1; else if (r) break; } if (n) x = -x; return(1); } #define MOD 1000000007 #define LIM 1000001 int N, ans; vector ch[LIM]; int dyn1[LIM]; // max. len. of downward i -> leaf int dyn2[LIM]; // max. len. of downward root -> leaf outside i's subtree int dyn3[LIM]; // max. disjoint len. of downward root -> leaf plus other path ongoing from i's parent void rec1(int i) { // recurse, and compute dyn1[i] dyn1[i] = 0; Foxen(c, ch[i]) { rec1(c); Max(dyn1[i], dyn1[c] + 1); } } void rec2(int i, int d) { // compute answer for i ans = ans * (LL)max(dyn1[i] + dyn2[i] + (!i ? 0 : 1), dyn3[i]) % MOD; // compute max 2 (dyn1[c] + 1, c) pairs PR m1, m2; m1 = m2 = mp(0, -1); Foxen(c, ch[i]) { PR p = mp(dyn1[c] + 1, c); if (p > m1) m2 = m1, m1 = p; else if (p > m2) m2 = p; } // compute dyn2[c] and dyn3[c], and recurse Foxen(c, ch[i]) { int m = (m1.y == c ? m2 : m1).x; dyn2[c] = max(d + m, dyn2[i]); dyn3[c] = max(dyn3[i] + 1, dyn2[i] + m + 1 + (!i ? 0 : 1)); rec2(c, d + 1); } } int ProcessCase() { int i, j; // input Read(N); Fox1(i, N - 1) { Read(j), j--; ch[j].pb(i); } // DP ans = 1; rec1(0); rec2(0, 0); // reset Fox(i, N) ch[i].clear(); return(ans); } int main() { int T, t; Read(T); Fox1(t, T) printf("Case #%d: %d\n", t, ProcessCase()); return(0); }