File size: 4,392 Bytes
ab396f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
// Ethan Sums Shortest Distances
// Solution by Jacob Plachta
#define DEBUG 0
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x*x); }
string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#if DEBUG
#define GETCHAR getchar
#else
#define GETCHAR getchar_unlocked
#endif
bool Read(int &x)
{
char c,r=0,n=0;
x=0;
for(;;)
{
c=GETCHAR();
if ((c<0) && (!r))
return(0);
if ((c=='-') && (!r))
n=1;
else
if ((c>='0') && (c<='9'))
x=x*10+c-'0',r=1;
else
if (r)
break;
}
if (n)
x=-x;
return(1);
}
#define LIM 51
int R[2][LIM],sum[2][LIM];
LL dyn[LIM][3][LIM];
// dyn[i][r][p] = min. cost such that:
// - you're ending at a vertical edge in column i (its cost is exluded)
// - you previously had a partial horizontal section in row r (r=2 indicates both rows)
// - the partial horizontal section started in column p
int main()
{
if (DEBUG)
freopen("in.txt","r",stdin);
// vars
int T,t;
int N;
LL S;
int i,i2,j,k,r,r2,p,p2,s;
LL ans,cur,cur2;
// testcase loop
Read(T);
Fox1(t,T)
{
// input, and compute each row's prefix sums
Read(N);
Fox(i,2)
Fox(j,N)
{
Read(R[i][j]);
sum[i][j+1]=sum[i][j]+R[i][j];
}
S=sum[0][N]+sum[1][N];
// initial DP step (before first vertical edge)
Fill(dyn,60);
Fox(i,N)
{
cur=0;
// compute horizontal section costs for both rows' prefixes
Fox(j,2)
{
s=0;
Fox(k,i)
{
s+=R[j][k];
cur+=s*(S-s);
}
}
dyn[i][2][0]=cur;
}
// main DP
Fox(i,N)
FoxI(i2,i+1,N-1)
Fox(r2,2)
FoxI(p2,i+1,i2)
{
cur=0;
// compute full horizontal section cost
s=sum[r2][p2]+sum[1-r2][i+1];
FoxI(j,i,i2-1)
{
cur+=s*(S-s);
s+=R[1-r2][j+1];
}
// compute left partial horizontal section cost
s=0;
FoxRI(j,i+1,p2-1)
{
s+=R[r2][j];
cur+=s*(S-s);
}
// compute right partial horizontal section cost
s=0;
FoxI(j,p2,i2-1)
{
s+=R[r2][j];
cur+=s*(S-s);
}
// consider all previous states
Fox(r,3)
Fox(p,i+1)
{
cur2=dyn[i][r][p]+cur;
// compute vertical edge cost
if (r==2)
s=sum[r2][p2];
else
if (r==r2)
s=sum[r2][p2]-sum[r2][p];
else
s=sum[r2][p2]+sum[1-r2][p];
cur2+=s*(S-s);
Min(dyn[i2][r2][p2],cur2);
}
}
// final DP step (after last vertical edge)
ans=(LL)INF*INF;
Fox(i,N)
Fox(r,3)
Fox(p,i+1)
{
cur=dyn[i][r][p];
// compute horizontal section costs for both rows' suffixes
Fox(j,2)
{
s=0;
FoxRI(k,i+1,N-1)
{
s+=R[j][k];
cur+=s*(S-s);
}
}
// compute vertical edge cost
if (r==2)
s=sum[0][N];
else
s=sum[r][N]-sum[r][p];
cur+=s*(S-s);
Min(ans,cur);
}
// output
printf("Case #%d: %lld\n",t,ans);
}
return(0);
} |