Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 4,392 Bytes
ab396f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Ethan Sums Shortest Distances
// Solution by Jacob Plachta

#define DEBUG 0

#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;

#define LL long long
#define LD long double
#define PR pair<int,int>

#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second

template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x*x); }
string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); }

const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);

#if DEBUG
#define GETCHAR getchar
#else
#define GETCHAR getchar_unlocked
#endif

bool Read(int &x)
{
	char c,r=0,n=0;
	x=0;
		for(;;)
		{
			c=GETCHAR();
				if ((c<0) && (!r))
					return(0);
				if ((c=='-') && (!r))
					n=1;
				else
				if ((c>='0') && (c<='9'))
					x=x*10+c-'0',r=1;
				else
				if (r)
					break;
		}
		if (n)
			x=-x;
	return(1);
}

#define LIM 51

int R[2][LIM],sum[2][LIM];
LL dyn[LIM][3][LIM];
// dyn[i][r][p] = min. cost such that:
// - you're ending at a vertical edge in column i (its cost is exluded)
// - you previously had a partial horizontal section in row r (r=2 indicates both rows)
// - the partial horizontal section started in column p

int main()
{
		if (DEBUG)
			freopen("in.txt","r",stdin);
	// vars
	int T,t;
	int N;
	LL S;
	int i,i2,j,k,r,r2,p,p2,s;
	LL ans,cur,cur2;
	// testcase loop
	Read(T);
		Fox1(t,T)
		{
			// input, and compute each row's prefix sums
			Read(N);
				Fox(i,2)
					Fox(j,N)
					{
						Read(R[i][j]);
						sum[i][j+1]=sum[i][j]+R[i][j];
					}
			S=sum[0][N]+sum[1][N];
			// initial DP step (before first vertical edge)
			Fill(dyn,60);
				Fox(i,N)
				{
					cur=0;
					// compute horizontal section costs for both rows' prefixes
						Fox(j,2)
						{
							s=0;
								Fox(k,i)
								{
									s+=R[j][k];
									cur+=s*(S-s);
								}
						}
					dyn[i][2][0]=cur;
				}
			// main DP
				Fox(i,N)
					FoxI(i2,i+1,N-1)
						Fox(r2,2)
							FoxI(p2,i+1,i2)
							{
								cur=0;
								// compute full horizontal section cost
								s=sum[r2][p2]+sum[1-r2][i+1];
									FoxI(j,i,i2-1)
									{
										cur+=s*(S-s);
										s+=R[1-r2][j+1];
									}
								// compute left partial horizontal section cost
								s=0;
									FoxRI(j,i+1,p2-1)
									{
										s+=R[r2][j];
										cur+=s*(S-s);
									}
								// compute right partial horizontal section cost
								s=0;
									FoxI(j,p2,i2-1)
									{
										s+=R[r2][j];
										cur+=s*(S-s);
									}
								// consider all previous states
									Fox(r,3)
										Fox(p,i+1)
										{
											cur2=dyn[i][r][p]+cur;
											// compute vertical edge cost
												if (r==2)
													s=sum[r2][p2];
												else
												if (r==r2)
													s=sum[r2][p2]-sum[r2][p];
												else
													s=sum[r2][p2]+sum[1-r2][p];
											cur2+=s*(S-s);
											Min(dyn[i2][r2][p2],cur2);
										}
							}
			// final DP step (after last vertical edge)
			ans=(LL)INF*INF;
				Fox(i,N)
					Fox(r,3)
						Fox(p,i+1)
						{
							cur=dyn[i][r][p];
							// compute horizontal section costs for both rows' suffixes
								Fox(j,2)
								{
									s=0;
										FoxRI(k,i+1,N-1)
										{
											s+=R[j][k];
											cur+=s*(S-s);
										}
								}
							// compute vertical edge cost
								if (r==2)
									s=sum[0][N];
								else
									s=sum[r][N]-sum[r][p];
							cur+=s*(S-s);
							Min(ans,cur);
						}
			// output
			printf("Case #%d: %lld\n",t,ans);
		}
	return(0);
}