--- annotations_creators: - machine-generated language_creators: - found language: [] license: - other multilinguality: - monolingual size_categories: - unknown source_datasets: - original task_categories: - other task_ids: [] pretty_name: Set5 tags: - other-image-super-resolution --- # Dataset Card for Set5 ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage**: http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html - **Repository**: https://huggingface.co./datasets/eugenesiow/Set5 - **Paper**: http://people.rennes.inria.fr/Aline.Roumy/publi/12bmvc_Bevilacqua_lowComplexitySR.pdf - **Leaderboard**: https://github.com/eugenesiow/super-image#scale-x2 ### Dataset Summary Set5 is a evaluation dataset with 5 RGB images for the image super resolution task. The 5 images of the dataset are (“baby”, “bird”, “butterfly”, “head”, “woman”). Install with `pip`: ```bash pip install datasets super-image ``` Evaluate a model with the [`super-image`](https://github.com/eugenesiow/super-image) library: ```python from datasets import load_dataset from super_image import EdsrModel from super_image.data import EvalDataset, EvalMetrics dataset = load_dataset('eugenesiow/Set5', 'bicubic_x2', split='validation') eval_dataset = EvalDataset(dataset) model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2) EvalMetrics().evaluate(model, eval_dataset) ``` ### Supported Tasks and Leaderboards The dataset is commonly used for evaluation of the `image-super-resolution` task. Unofficial [`super-image`](https://github.com/eugenesiow/super-image) leaderboard for: - [Scale 2](https://github.com/eugenesiow/super-image#scale-x2) - [Scale 3](https://github.com/eugenesiow/super-image#scale-x3) - [Scale 4](https://github.com/eugenesiow/super-image#scale-x4) - [Scale 8](https://github.com/eugenesiow/super-image#scale-x8) ### Languages Not applicable. ## Dataset Structure ### Data Instances An example of `validation` for `bicubic_x2` looks as follows. ``` { "hr": "/.cache/huggingface/datasets/downloads/extracted/Set5_HR/baby.png", "lr": "/.cache/huggingface/datasets/downloads/extracted/Set5_LR_x2/baby.png" } ``` ### Data Fields The data fields are the same among all splits. - `hr`: a `string` to the path of the High Resolution (HR) `.png` image. - `lr`: a `string` to the path of the Low Resolution (LR) `.png` image. ### Data Splits | name |validation| |-------|---:| |bicubic_x2|5| |bicubic_x3|5| |bicubic_x4|5| ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process No annotations. #### Who are the annotators? No annotators. ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators - **Original Authors**: [Bevilacqua et al.](http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html) ### Licensing Information Academic use only. ### Citation Information ```bibtex @article{bevilacqua2012low, title={Low-complexity single-image super-resolution based on nonnegative neighbor embedding}, author={Bevilacqua, Marco and Roumy, Aline and Guillemot, Christine and Alberi-Morel, Marie Line}, year={2012}, publisher={BMVA press} } ``` ### Contributions Thanks to [@eugenesiow](https://github.com/eugenesiow) for adding this dataset.