|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Wino-X is a parallel dataset of German, French, and Russian Winograd schemas, aligned with their English |
|
counterparts, used to examine whether neural machine translation models can perform coreference resolution that |
|
requires commonsense knowledge, and whether multilingual language models are capable of commonsense reasoning across |
|
multiple languages. """ |
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{Emelin2021WinoXMW, |
|
title={Wino-X: Multilingual Winograd Schemas for Commonsense Reasoning and Coreference Resolution}, |
|
author={Denis Emelin and Rico Sennrich}, |
|
booktitle={EMNLP}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Wino-X is a parallel dataset of German, French, and Russian Winograd schemas, aligned with their English |
|
counterparts, used to examine whether neural machine translation models can perform coreference resolution that |
|
requires commonsense knowledge and whether multilingual language models are capable of commonsense reasoning across |
|
multiple languages. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/demelin/Wino-X" |
|
|
|
_LICENSE = "MIT" |
|
|
|
|
|
|
|
_URLS = { |
|
"mt_en_de": "https://huggingface.co./datasets/demelin/wino_x/resolve/main/data/mt/en_de_test.jsonl", |
|
"mt_en_fr": "https://huggingface.co./datasets/demelin/wino_x/resolve/main/data/mt/en_fr_test.jsonl", |
|
"mt_en_ru": "https://huggingface.co./datasets/demelin/wino_x/resolve/main/data/mt/en_ru_test.jsonl", |
|
"lm_en_de": "https://huggingface.co./datasets/demelin/wino_x/resolve/main/data/lm/en_de_test.jsonl", |
|
"lm_en_fr": "https://huggingface.co./datasets/demelin/wino_x/resolve/main/data/lm/en_fr_test.jsonl", |
|
"lm_en_ru": "https://huggingface.co./datasets/demelin/wino_x/resolve/main/data/lm/en_ru_test.jsonl" |
|
} |
|
|
|
|
|
class WinoX(datasets.GeneratorBasedBuilder): |
|
""" Wino-X is a dataset of German, French, and Russian Winograd schemas, aligned with their English counterparts """ |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="mt_en_de", version=VERSION, |
|
description="This is the EN-DE part of the Wino-X translation data."), |
|
datasets.BuilderConfig(name="mt_en_fr", version=VERSION, |
|
description="This is the EN-FR part of the Wino-X translation data."), |
|
datasets.BuilderConfig(name="mt_en_ru", version=VERSION, |
|
description="This is the EN-RU part of the Wino-X translation data."), |
|
datasets.BuilderConfig(name="lm_en_de", version=VERSION, |
|
description="This is the EN-DE part of the Wino-X language modeling data."), |
|
datasets.BuilderConfig(name="lm_en_fr", version=VERSION, |
|
description="This is the EN-FR part of the Wino-X language modeling data."), |
|
datasets.BuilderConfig(name="lm_en_ru", version=VERSION, |
|
description="This is the EN-RU part of the Wino-X language modeling data."), |
|
] |
|
|
|
def _info(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tgt_lang = self.config.name.split('_')[-1] |
|
if self.config.name.startswith('mt_'): |
|
features = datasets.Features( |
|
{ |
|
"qID": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"translation1": datasets.Value("string"), |
|
"translation2": datasets.Value("string"), |
|
"answer": datasets.Value("int64"), |
|
"pronoun1": datasets.Value("string"), |
|
"pronoun2": datasets.Value("string"), |
|
"referent1_en": datasets.Value("string"), |
|
"referent2_en": datasets.Value("string"), |
|
"true_translation_referent_of_pronoun1_{}".format(tgt_lang): datasets.Value("string"), |
|
"true_translation_referent_of_pronoun2_{}".format(tgt_lang): datasets.Value("string"), |
|
"false_translation_referent_of_pronoun1_{}".format(tgt_lang): datasets.Value("string"), |
|
"false_translation_referent_of_pronoun2_{}".format(tgt_lang): datasets.Value("string") |
|
} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
features = datasets.Features( |
|
{ |
|
"qID": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"context_en": datasets.Value("string"), |
|
"context_{}".format(tgt_lang): datasets.Value("string"), |
|
"answer": datasets.Value("int64"), |
|
"option1_en": datasets.Value("string"), |
|
"option2_en": datasets.Value("string"), |
|
"option1_{}".format(tgt_lang): datasets.Value("string"), |
|
"option2_{}".format(tgt_lang): datasets.Value("string"), |
|
"context_referent_of_option1_{}".format(tgt_lang): datasets.Value("string"), |
|
"context_referent_of_option2_{}".format(tgt_lang): datasets.Value("string") |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS[self.config.name]) |
|
return [datasets.SplitGenerator(name=datasets.Split.TEST, |
|
gen_kwargs={'filepath': downloaded_files, 'split': 'test'})] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
yield key, data |
|
|