Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K - 1M
Tags:
emotion-classification
License:
Convert dataset to Parquet (#12)
Browse files- Convert dataset to Parquet (cd6ec7974b8bfd3b0180aaec4217ef430a15acce)
- Add 'unsplit' config data files (4b41f73c72b4ca6e24a641b551ac8f3b1090ed57)
- Delete loading script (0f2013aff0f120885b4892bddfe59faafa13a310)
- Delete data file (6d44c341e752cddbb545a0e4f4a41ecb09da5744)
- Delete legacy dataset_infos.json (23abdc09990f9cc02a701b82af668d46d8235b77)
- Delete data file (52bb8b6ef67e33229acd43b70874d585cbd45c95)
- Delete data file (b3ebb3b4fd4045c7d98862853d63c5b19582c254)
- Delete data file (106c232c0a63f3f06ae5d80d141114a00604e969)
- README.md +22 -8
- dataset_infos.json +0 -1
- emotion.py +0 -88
- data/test.jsonl.gz → split/test-00000-of-00001.parquet +2 -2
- data/validation.jsonl.gz → split/train-00000-of-00001.parquet +2 -2
- data/train.jsonl.gz → split/validation-00000-of-00001.parquet +2 -2
- data/data.jsonl.gz → unsplit/train-00000-of-00001.parquet +2 -2
README.md
CHANGED
@@ -38,16 +38,16 @@ dataset_info:
|
|
38 |
'5': surprise
|
39 |
splits:
|
40 |
- name: train
|
41 |
-
num_bytes:
|
42 |
num_examples: 16000
|
43 |
- name: validation
|
44 |
-
num_bytes:
|
45 |
num_examples: 2000
|
46 |
- name: test
|
47 |
-
num_bytes:
|
48 |
num_examples: 2000
|
49 |
-
download_size:
|
50 |
-
dataset_size:
|
51 |
- config_name: unsplit
|
52 |
features:
|
53 |
- name: text
|
@@ -64,10 +64,24 @@ dataset_info:
|
|
64 |
'5': surprise
|
65 |
splits:
|
66 |
- name: train
|
67 |
-
num_bytes:
|
68 |
num_examples: 416809
|
69 |
-
download_size:
|
70 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
train-eval-index:
|
72 |
- config: default
|
73 |
task: text-classification
|
|
|
38 |
'5': surprise
|
39 |
splits:
|
40 |
- name: train
|
41 |
+
num_bytes: 1741533
|
42 |
num_examples: 16000
|
43 |
- name: validation
|
44 |
+
num_bytes: 214695
|
45 |
num_examples: 2000
|
46 |
- name: test
|
47 |
+
num_bytes: 217173
|
48 |
num_examples: 2000
|
49 |
+
download_size: 1287193
|
50 |
+
dataset_size: 2173401
|
51 |
- config_name: unsplit
|
52 |
features:
|
53 |
- name: text
|
|
|
64 |
'5': surprise
|
65 |
splits:
|
66 |
- name: train
|
67 |
+
num_bytes: 45444017
|
68 |
num_examples: 416809
|
69 |
+
download_size: 26888538
|
70 |
+
dataset_size: 45444017
|
71 |
+
configs:
|
72 |
+
- config_name: split
|
73 |
+
data_files:
|
74 |
+
- split: train
|
75 |
+
path: split/train-*
|
76 |
+
- split: validation
|
77 |
+
path: split/validation-*
|
78 |
+
- split: test
|
79 |
+
path: split/test-*
|
80 |
+
default: true
|
81 |
+
- config_name: unsplit
|
82 |
+
data_files:
|
83 |
+
- split: train
|
84 |
+
path: unsplit/train-*
|
85 |
train-eval-index:
|
86 |
- config: default
|
87 |
task: text-classification
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n", "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n", "homepage": "https://github.com/dair-ai/emotion_dataset", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 6, "names": ["sadness", "joy", "love", "anger", "fear", "surprise"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "text", "output": "label"}, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["anger", "fear", "joy", "love", "sadness", "surprise"]}], "builder_name": "emotion", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1741541, "num_examples": 16000, "dataset_name": "emotion"}, "validation": {"name": "validation", "num_bytes": 214699, "num_examples": 2000, "dataset_name": "emotion"}, "test": {"name": "test", "num_bytes": 217177, "num_examples": 2000, "dataset_name": "emotion"}}, "download_checksums": {"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {"num_bytes": 1658616, "checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"}, "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {"num_bytes": 204240, "checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"}, "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {"num_bytes": 206760, "checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"}}, "download_size": 2069616, "post_processing_size": null, "dataset_size": 2173417, "size_in_bytes": 4243033}}
|
|
|
|
emotion.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
from datasets.tasks import TextClassification
|
5 |
-
|
6 |
-
|
7 |
-
_CITATION = """\
|
8 |
-
@inproceedings{saravia-etal-2018-carer,
|
9 |
-
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
|
10 |
-
author = "Saravia, Elvis and
|
11 |
-
Liu, Hsien-Chi Toby and
|
12 |
-
Huang, Yen-Hao and
|
13 |
-
Wu, Junlin and
|
14 |
-
Chen, Yi-Shin",
|
15 |
-
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
|
16 |
-
month = oct # "-" # nov,
|
17 |
-
year = "2018",
|
18 |
-
address = "Brussels, Belgium",
|
19 |
-
publisher = "Association for Computational Linguistics",
|
20 |
-
url = "https://www.aclweb.org/anthology/D18-1404",
|
21 |
-
doi = "10.18653/v1/D18-1404",
|
22 |
-
pages = "3687--3697",
|
23 |
-
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
|
24 |
-
}
|
25 |
-
"""
|
26 |
-
|
27 |
-
_DESCRIPTION = """\
|
28 |
-
Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
|
29 |
-
"""
|
30 |
-
|
31 |
-
_HOMEPAGE = "https://github.com/dair-ai/emotion_dataset"
|
32 |
-
|
33 |
-
_LICENSE = "The dataset should be used for educational and research purposes only"
|
34 |
-
|
35 |
-
_URLS = {
|
36 |
-
"split": {
|
37 |
-
"train": "data/train.jsonl.gz",
|
38 |
-
"validation": "data/validation.jsonl.gz",
|
39 |
-
"test": "data/test.jsonl.gz",
|
40 |
-
},
|
41 |
-
"unsplit": {
|
42 |
-
"train": "data/data.jsonl.gz",
|
43 |
-
},
|
44 |
-
}
|
45 |
-
|
46 |
-
|
47 |
-
class Emotion(datasets.GeneratorBasedBuilder):
|
48 |
-
VERSION = datasets.Version("1.0.0")
|
49 |
-
BUILDER_CONFIGS = [
|
50 |
-
datasets.BuilderConfig(
|
51 |
-
name="split", version=VERSION, description="Dataset split in train, validation and test"
|
52 |
-
),
|
53 |
-
datasets.BuilderConfig(name="unsplit", version=VERSION, description="Unsplit dataset"),
|
54 |
-
]
|
55 |
-
DEFAULT_CONFIG_NAME = "split"
|
56 |
-
|
57 |
-
def _info(self):
|
58 |
-
class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
59 |
-
return datasets.DatasetInfo(
|
60 |
-
description=_DESCRIPTION,
|
61 |
-
features=datasets.Features(
|
62 |
-
{"text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names)}
|
63 |
-
),
|
64 |
-
supervised_keys=("text", "label"),
|
65 |
-
homepage=_HOMEPAGE,
|
66 |
-
citation=_CITATION,
|
67 |
-
license=_LICENSE,
|
68 |
-
task_templates=[TextClassification(text_column="text", label_column="label")],
|
69 |
-
)
|
70 |
-
|
71 |
-
def _split_generators(self, dl_manager):
|
72 |
-
"""Returns SplitGenerators."""
|
73 |
-
paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
74 |
-
if self.config.name == "split":
|
75 |
-
return [
|
76 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}),
|
77 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": paths["validation"]}),
|
78 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]}),
|
79 |
-
]
|
80 |
-
else:
|
81 |
-
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]})]
|
82 |
-
|
83 |
-
def _generate_examples(self, filepath):
|
84 |
-
"""Generate examples."""
|
85 |
-
with open(filepath, encoding="utf-8") as f:
|
86 |
-
for idx, line in enumerate(f):
|
87 |
-
example = json.loads(line)
|
88 |
-
yield idx, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/test.jsonl.gz → split/test-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f8407fa1ca9c310f55781f082ed73812f6551e8dda2c61973123a121869245b
|
3 |
+
size 128987
|
data/validation.jsonl.gz → split/train-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10817f0f2ea42358bc62f69a09dfb8bd71701727df6d5a387bea742f3ea06417
|
3 |
+
size 1030740
|
data/train.jsonl.gz → split/validation-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c70f0e660b5ebd1ea9a37d2a851f516f08a6d6477cdfc11be204e22a2f1102fd
|
3 |
+
size 127466
|
data/data.jsonl.gz → unsplit/train-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba60fe890562b2770967d63f9d7eb104691e028ca68716cd4e926996ecb31441
|
3 |
+
size 26888538
|