Update xor-tydi.py
Browse files- xor-tydi.py +31 -22
xor-tydi.py
CHANGED
@@ -108,39 +108,49 @@ class XORTyDi(datasets.GeneratorBasedBuilder):
|
|
108 |
return splits
|
109 |
|
110 |
def _generate_examples(self, files):
|
111 |
-
|
112 |
-
|
113 |
-
# if data.get('negative_passages') is None:
|
114 |
-
# data['negative_passages'] = []
|
115 |
-
# if data.get('positive_passages') is None:
|
116 |
-
# data['positive_passages'] = []
|
117 |
-
# if data.get('answers') is None:
|
118 |
-
# data['answers'] = []
|
119 |
-
# return data['query_id'], data
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def process_train_entry(data, _id):
|
122 |
positive_ctxs = data["positive_ctxs"]
|
123 |
hard_negative_ctxs = data["hard_negative_ctxs"]
|
124 |
# each ctx: {'title':... , 'text': ....}
|
125 |
|
126 |
def process_ctx(ctxs, tag):
|
127 |
-
|
128 |
-
for doc in ctxs:
|
129 |
-
if isinstance(doc["text"], list):
|
130 |
-
assert len(doc["text"]) == 1
|
131 |
-
else:
|
132 |
-
assert isinstance(doc["text"], str)
|
133 |
-
|
134 |
return [
|
135 |
{
|
136 |
"title": doc["title"],
|
137 |
-
"text":
|
138 |
-
'docid': f'{tag}-{i}-{random.randint(*RANGE)}'
|
|
|
139 |
} for i, doc in enumerate(ctxs)
|
140 |
]
|
141 |
|
142 |
-
_id = f"{_id}-{random.randint(*RANGE)}"
|
143 |
-
# import pdb; pdb.set_trace()
|
144 |
return _id, {
|
145 |
"query_id": _id,
|
146 |
"query": data["question"],
|
@@ -160,8 +170,7 @@ class XORTyDi(datasets.GeneratorBasedBuilder):
|
|
160 |
"negative_passages": [],
|
161 |
}
|
162 |
|
163 |
-
|
164 |
-
filepath = files[0]
|
165 |
try:
|
166 |
with open(filepath, encoding="utf-8") as f:
|
167 |
all_data = json.load(f)
|
|
|
108 |
return splits
|
109 |
|
110 |
def _generate_examples(self, files):
|
111 |
+
assert len(files) == 1
|
112 |
+
filepath = files[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
|
115 |
+
def process_doc_text(doc):
|
116 |
+
if isinstance(doc["text"], list):
|
117 |
+
assert len(doc["text"]) == 1
|
118 |
+
return doc['text'][0].strip()
|
119 |
+
else:
|
120 |
+
assert isinstance(doc["text"], str)
|
121 |
+
return doc['text'].strip()
|
122 |
+
|
123 |
+
|
124 |
+
# prepare doc
|
125 |
+
doc2docid = {}
|
126 |
+
with open(filepath, encoding="utf-8") as f:
|
127 |
+
all_data = json.load(f)
|
128 |
+
for i, data in enumerate(all_data):
|
129 |
+
positive_ctxs = data["positive_ctxs"]
|
130 |
+
hard_negative_ctxs = data["hard_negative_ctxs"]
|
131 |
+
ctxs = positive_ctxs + hard_negative_ctxs
|
132 |
+
|
133 |
+
for doc for ctxs:
|
134 |
+
text = process_doc_text[doc]
|
135 |
+
if text not in doc2docid:
|
136 |
+
doc2docid[text] = len(doc2docid)
|
137 |
+
|
138 |
def process_train_entry(data, _id):
|
139 |
positive_ctxs = data["positive_ctxs"]
|
140 |
hard_negative_ctxs = data["hard_negative_ctxs"]
|
141 |
# each ctx: {'title':... , 'text': ....}
|
142 |
|
143 |
def process_ctx(ctxs, tag):
|
144 |
+
text = process_doc_text(doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
return [
|
146 |
{
|
147 |
"title": doc["title"],
|
148 |
+
"text":
|
149 |
+
# 'docid': f'{tag}-{i}-{random.randint(*RANGE)}'
|
150 |
+
'docid': doc2docid[docid]
|
151 |
} for i, doc in enumerate(ctxs)
|
152 |
]
|
153 |
|
|
|
|
|
154 |
return _id, {
|
155 |
"query_id": _id,
|
156 |
"query": data["question"],
|
|
|
170 |
"negative_passages": [],
|
171 |
}
|
172 |
|
173 |
+
|
|
|
174 |
try:
|
175 |
with open(filepath, encoding="utf-8") as f:
|
176 |
all_data = json.load(f)
|