Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
Italian
Size:
10K - 100K
License:
"""TODO(squad_it): Add a description here.""" | |
import json | |
import datasets | |
# TODO(squad_it): BibTeX citation | |
_CITATION = """\ | |
@InProceedings{10.1007/978-3-030-03840-3_29, | |
author={Croce, Danilo and Zelenanska, Alexandra and Basili, Roberto}, | |
editor={Ghidini, Chiara and Magnini, Bernardo and Passerini, Andrea and Traverso, Paolo", | |
title={Neural Learning for Question Answering in Italian}, | |
booktitle={AI*IA 2018 -- Advances in Artificial Intelligence}, | |
year={2018}, | |
publisher={Springer International Publishing}, | |
address={Cham}, | |
pages={389--402}, | |
isbn={978-3-030-03840-3} | |
} | |
""" | |
# TODO(squad_it): | |
_DESCRIPTION = """\ | |
SQuAD-it is derived from the SQuAD dataset and it is obtained through semi-automatic translation of the SQuAD dataset | |
into Italian. It represents a large-scale dataset for open question answering processes on factoid questions in Italian. | |
The dataset contains more than 60,000 question/answer pairs derived from the original English dataset. The dataset is | |
split into training and test sets to support the replicability of the benchmarking of QA systems: | |
""" | |
_URL = "https://github.com/crux82/squad-it/raw/master/" | |
_URLS = { | |
"train": _URL + "SQuAD_it-train.json.gz", | |
"test": _URL + "SQuAD_it-test.json.gz", | |
} | |
class SquadIt(datasets.GeneratorBasedBuilder): | |
"""TODO(squad_it): Short description of my dataset.""" | |
# TODO(squad_it): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(squad_it): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
} | |
), | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://github.com/crux82/squad-it", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(squad_it): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
urls_to_download = _URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(squad_it): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for example in data["data"]: | |
for paragraph in example["paragraphs"]: | |
context = paragraph["context"].strip() | |
for qa in paragraph["qas"]: | |
question = qa["question"].strip() | |
id_ = qa["id"] | |
answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
answers = [answer["text"].strip() for answer in qa["answers"]] | |
yield id_, { | |
"context": context, | |
"question": question, | |
"id": id_, | |
"answers": { | |
"answer_start": answer_starts, | |
"text": answers, | |
}, | |
} | |