blanchon commited on
Commit
5d93d40
1 Parent(s): b570743

🤗 Add DatasetCard

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: unknown
4
+ size_categories:
5
+ - 1K<n<10K
6
+ task_categories:
7
+ - image-classification
8
+ paperswithcode_id: advance
9
+ pretty_name: ADVANCE
10
+ tags:
11
+ - remote-sensing
12
+ - earth-observation
13
+ - geospatial
14
+ - satellite-imagery
15
+ - audiovisual-aerial-scene-recognition
16
+ - sentinel-2
17
+ ---
18
+
19
+ # ADVANCE
20
+
21
+ <!-- Dataset thumbnail -->
22
+ ![ADVANCE](./thumbnail.png)
23
+
24
+ <!-- Provide a quick summary of the dataset. -->
25
+ Audiovisual Aerial Scene Recognition Dataset (ADVANCE) is a comprehensive resource designed for audiovisual aerial scene recognition tasks. It consists of 5,075 pairs of geotagged audio recordings and high-resolution 512x512 RGB images extracted from FreeSound and Google Earth. These images are then labeled into 13 scene categories using OpenStreetMap.
26
+ - **Paper:** https://arxiv.org/abs/2005.08449
27
+ - **Homepage:** https://akchen.github.io/ADVANCE-DATASET/
28
+
29
+ ## Description
30
+
31
+ <!-- Provide a longer summary of what this dataset is. -->
32
+
33
+ The **Audiovisual Aerial Scene Recognition Dataset** is a comprehensive resource designed for audiovisual aerial scene recognition tasks. It consists of 5,075 pairs of geotagged audio recordings and high-resolution 512x512 RGB images extracted from [FreeSound](https://freesound.org/browse/geotags/?c_lat=24&c_lon=20&z=2) and [Google Earth](https://earth.google.com/web/). These images are then labeled into 13 scene categories using OpenStreetMap
34
+
35
+ The dataset serves as a valuable benchmark for research and development in audiovisual aerial scene recognition, enabling researchers to explore cross-task transfer learning techniques and geotagged data analysis.
36
+
37
+ - **Total Number of Images**: 5075
38
+ - **Bands**: 3 (RGB)
39
+ - **Image Resolution**: 10mm
40
+ - **Image size**: 512x512
41
+ - **Land Cover Classes**: 13
42
+ - **Classes**: airport, beach, bridge, farmland, forest, grassland, harbour, lake, orchard, residential, sparse shrub land, sports land, train station
43
+ - **Source**: Sentinel-2
44
+ - **Dataset features**: 5,075 pairs of geotagged audio recordings and images, three spectral bands - RGB (512x512 px), 10-second audio recordings
45
+ - **Dataset format**:, images are three-channel jpgs, audio files are in wav format
46
+
47
+
48
+ ## Usage
49
+
50
+ To use this dataset, simply use `datasets.load_dataset("blanchon/ADVANCE")`.
51
+ <!-- Provide any additional information on how to use this dataset. -->
52
+ ```python
53
+ from datasets import load_dataset
54
+ ADVANCE = load_dataset("blanchon/ADVANCE")
55
+ ```
56
+
57
+ ## Citation
58
+
59
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
60
+ If you use the EuroSAT dataset in your research, please consider citing the following publication:
61
+
62
+
63
+ ```bibtex
64
+ @article{hu2020crosstask,
65
+ title = {Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition},
66
+ author = {Di Hu and Xuhong Li and Lichao Mou and P. Jin and Dong Chen and L. Jing and Xiaoxiang Zhu and D. Dou},
67
+ journal = {European Conference on Computer Vision},
68
+ year = {2020},
69
+ doi = {10.1007/978-3-030-58586-0_5},
70
+ bibSource = {Semantic Scholar https://www.semanticscholar.org/paper/7fabb1ef96d2840834cfaf384408309bafc588d5}
71
+ }
72
+ ```