fix bugs in script
Browse files- qa_align.py +19 -6
qa_align.py
CHANGED
@@ -79,6 +79,16 @@ class QaAlign(datasets.GeneratorBasedBuilder):
|
|
79 |
def _info(self):
|
80 |
# We keep the exact same fields (columns) as the original dataset files (CSV)
|
81 |
# See https://github.com/DanielaBWeiss/QA-ALIGN/blob/main/data/official_qa_alignments/readme.md for format description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
features = datasets.Features(
|
83 |
{
|
84 |
"text_1": datasets.Value("string"),
|
@@ -87,9 +97,12 @@ class QaAlign(datasets.GeneratorBasedBuilder):
|
|
87 |
"prev_text_1": datasets.Value("string"),
|
88 |
"abs_sent_id_2": datasets.Value("string"),
|
89 |
"abs_sent_id_1": datasets.Value("string"),
|
90 |
-
"qas_1":
|
91 |
-
"qas_2":
|
92 |
-
"alignments":
|
|
|
|
|
|
|
93 |
}
|
94 |
)
|
95 |
return datasets.DatasetInfo(
|
@@ -145,12 +158,12 @@ class QaAlign(datasets.GeneratorBasedBuilder):
|
|
145 |
""" Yields QA-Align examples from a csv file. Each instance contains all the alignment for a pair of sentences. """
|
146 |
|
147 |
# merge annotations from sections
|
148 |
-
df = pd.read_csv(filepath)
|
149 |
for counter, dic in enumerate(df.to_dict('records')):
|
150 |
columns_to_load_into_object = ["qas_1", "qas_2", "alignments"]
|
151 |
for key in columns_to_load_into_object:
|
152 |
-
dic[key] =
|
153 |
-
columns_to_remove = ["worker_id","assignment_id","work_time_in_seconds", "year","topic","key","source","source-data","tokens_1","tokens_2"]
|
154 |
for key in columns_to_remove:
|
155 |
del dic[key]
|
156 |
yield counter, dic
|
|
|
79 |
def _info(self):
|
80 |
# We keep the exact same fields (columns) as the original dataset files (CSV)
|
81 |
# See https://github.com/DanielaBWeiss/QA-ALIGN/blob/main/data/official_qa_alignments/readme.md for format description
|
82 |
+
qa_dict = {
|
83 |
+
"qa_uuid": datasets.Value("string"),
|
84 |
+
"verb": datasets.Value("string"),
|
85 |
+
"verb_idx": datasets.Value("int32"),
|
86 |
+
"question": datasets.Value("string"),
|
87 |
+
"answer": datasets.Value("string"),
|
88 |
+
"answer_range": datasets.Value("string"),
|
89 |
+
}
|
90 |
+
qa_full_dict = dict(qa_dict, qaid_short=datasets.Value("string"))
|
91 |
+
|
92 |
features = datasets.Features(
|
93 |
{
|
94 |
"text_1": datasets.Value("string"),
|
|
|
97 |
"prev_text_1": datasets.Value("string"),
|
98 |
"abs_sent_id_2": datasets.Value("string"),
|
99 |
"abs_sent_id_1": datasets.Value("string"),
|
100 |
+
"qas_1": datasets.Sequence(qa_full_dict),
|
101 |
+
"qas_2": datasets.Sequence(qa_full_dict),
|
102 |
+
"alignments": datasets.Sequence({
|
103 |
+
"sent1": datasets.Sequence(qa_dict),
|
104 |
+
"sent2": datasets.Sequence(qa_dict),
|
105 |
+
}),
|
106 |
}
|
107 |
)
|
108 |
return datasets.DatasetInfo(
|
|
|
158 |
""" Yields QA-Align examples from a csv file. Each instance contains all the alignment for a pair of sentences. """
|
159 |
|
160 |
# merge annotations from sections
|
161 |
+
df = pd.read_csv(filepath, index_col=False)
|
162 |
for counter, dic in enumerate(df.to_dict('records')):
|
163 |
columns_to_load_into_object = ["qas_1", "qas_2", "alignments"]
|
164 |
for key in columns_to_load_into_object:
|
165 |
+
dic[key] = eval(dic[key])
|
166 |
+
columns_to_remove = ["Unnamed: 0","worker_id","assignment_id","work_time_in_seconds","abs_scu_id", "year","topic","key","source","source-data","tokens_1","tokens_2"]
|
167 |
for key in columns_to_remove:
|
168 |
del dic[key]
|
169 |
yield counter, dic
|