# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import datasets from datasets.tasks import AutomaticSpeechRecognition from tqdm.auto import tqdm # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{quran:dataset, title = {Quran data}, author={Tarteel.io}, year={2022} } """ # You can copy an official description _DESCRIPTION = """\ Quran recitation dataset from various Qari's and quran recitation from Tarteel users """ _HOMEPAGE = "https://huggingface.co./datasets/ashraf-ali/quran-data" _LICENSE = [ "cc-by-sa-4.0" ] _BASE_URL = "https://huggingface.co./datasets/ashraf-ali/quran-data/blob/main/" # relative path to data inside dataset's repo _DATA_URL = _BASE_URL + "{split}/{config}/{config}_{archive_id:06d}.tar" # relative path to file containing number of audio archives inside dataset's repo _N_SHARDS_URL = _BASE_URL + "n_shards.json" # relative path to metadata inside dataset's repo _MANIFEST_URL = _BASE_URL + "{split}/{config}.json" class QuranDataConfig(datasets.BuilderConfig): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class QuranData(datasets.GeneratorBasedBuilder): """Quran recitation dataset.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ QuranDataConfig(name="qari", version=VERSION, description="Qari quran recitation"), QuranDataConfig(name="user", version=VERSION, description="Quran recitation from various users"), ] DEFAULT_CONFIG_NAME = "qari" DEFAULT_WRITER_BATCH_SIZE = 512 def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "quran_id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "reciter": datasets.Value("string"), "duration_in_seconds": datasets.Value("float32"), "text": datasets.Value("string"), } ), task_templates=[AutomaticSpeechRecognition()], homepage=_HOMEPAGE, license="/".join(_LICENSE), # license must be a string citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.name == "microset": # take only first data archive for demo purposes url = [_DATA_URL.format( split="train", config="clean", archive_id=0)] archive_path = dl_manager.download(url) local_extracted_archive_path = dl_manager.extract( archive_path) if not dl_manager.is_streaming else [None] manifest_url = _MANIFEST_URL.format( split="train", config="clean_000000") # train/clean_000000.json manifest_path = dl_manager.download_and_extract(manifest_url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_path, # use iter_archive here to access the files in the TAR archives: "archives": [dl_manager.iter_archive(path) for path in archive_path], "manifest_path": manifest_path, }, ), ] n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL) with open(n_shards_path, encoding="utf-8") as f: n_shards = json.load(f) if self.config.name in ["validation", "test"]: splits_to_configs = {self.config.name: self.config.name} else: splits_to_configs = { "train": self.config.name, "validation": "validation", "test": "test" } audio_urls = { split: [ _DATA_URL.format(split=split, config=config, archive_id=i) for i in range(n_shards[split][config]) ] for split, config in splits_to_configs.items() } audio_archive_paths = dl_manager.download(audio_urls) # In non-streaming mode, we extract the archives to have the data locally: local_extracted_archive_paths = dl_manager.extract(audio_archive_paths) \ if not dl_manager.is_streaming else \ {split: [None] * len(audio_archive_paths) for split in splits_to_configs} manifest_urls = { split: _MANIFEST_URL.format(split=split, config=config) for split, config in splits_to_configs.items() } manifest_paths = dl_manager.download_and_extract(manifest_urls) # To access the audio data from the TAR archives using the download manager, # we have to use the dl_manager.iter_archive method # # This is because dl_manager.download_and_extract # doesn't work to stream TAR archives in streaming mode. # (we have to stream the files of a TAR archive one by one) # # The iter_archive method returns an iterable of (path_within_archive, file_obj) for every # file in a TAR archive. splits_to_names = { "train": datasets.Split.TRAIN, "validation": datasets.Split.VALIDATION, "test": datasets.Split.TEST, } split_generators = [] for split in splits_to_configs: split_generators.append( datasets.SplitGenerator( name=splits_to_names[split], gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths[split], # use iter_archive here to access the files in the TAR archives: "archives": [dl_manager.iter_archive(path) for path in audio_archive_paths[split]], "manifest_path": manifest_paths[split], } ) ) return split_generators def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path): meta = dict() with open(manifest_path, "r", encoding="utf-8") as f: for line in tqdm(f, desc="reading metadata file"): sample_meta = json.loads(line) _id = sample_meta["audio_document_id"] texts = sample_meta["training_data"]["label"] audio_filenames = sample_meta["training_data"]["name"] durations = sample_meta["training_data"]["duration_ms"] for audio_filename, text, duration in zip(audio_filenames, texts, durations): audio_filename = audio_filename.lstrip("./") meta[audio_filename] = { "audio_document_id": _id, "text": text, "duration_ms": duration } for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives): # Here we iterate over all the files within the TAR archive: for audio_filename, audio_file in archive: audio_filename = audio_filename.lstrip("./") # if an audio file exists locally (i.e. in default, non-streaming mode) set the full path to it # joining path to directory that the archive was extracted to and audio filename. path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \ else audio_filename yield audio_filename, { "id": audio_filename, "audio": {"path": path, "bytes": audio_file.read()}, "text": meta[audio_filename]["text"], "duration_ms": meta[audio_filename]["duration_ms"] }