system HF staff commited on
Commit
e787f92
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "We introduce Social IQa: Social Interaction QA, a new question-answering benchmark for testing social commonsense intelligence. Contrary to many prior benchmarks that focus on physical or taxonomic knowledge, Social IQa focuses on reasoning about people\u2019s actions and their social implications. For example, given an action like \"Jesse saw a concert\" and a question like \"Why did Jesse do this?\", humans can easily infer that Jesse wanted \"to see their favorite performer\" or \"to enjoy the music\", and not \"to see what's happening inside\" or \"to see if it works\". The actions in Social IQa span a wide variety of social situations, and answer candidates contain both human-curated answers and adversarially-filtered machine-generated candidates. Social IQa contains over 37,000 QA pairs for evaluating models\u2019 abilities to reason about the social implications of everyday events and situations. (Less)\n", "citation": "\n", "homepage": "https://leaderboard.allenai.org/socialiqa/submissions/get-started", "license": "", "features": {"context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answerA": {"dtype": "string", "id": null, "_type": "Value"}, "answerB": {"dtype": "string", "id": null, "_type": "Value"}, "answerC": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "social_i_qa", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6389954, "num_examples": 33410, "dataset_name": "social_i_qa"}, "validation": {"name": "validation", "num_bytes": 376508, "num_examples": 1954, "dataset_name": "social_i_qa"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/socialiqa/socialiqa-train-dev.zip": {"num_bytes": 2198056, "checksum": "ee073914a0fc33265cfbcfc50ec20df9b2e07809c3f420f599138d1f394ef5c3"}}, "download_size": 2198056, "dataset_size": 6766462, "size_in_bytes": 8964518}}
dummy/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8149f5e84940d3e94a2cec89966774f1500ef2e8e6b8148cbb60468ff12d49fe
3
+ size 2274
social_i_qa.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TODO(social_i_qa): Add a description here."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ # TODO(social_i_qa): BibTeX citation
12
+ _CITATION = """
13
+ """
14
+
15
+ # TODO(social_i_qa):
16
+ _DESCRIPTION = """\
17
+ We introduce Social IQa: Social Interaction QA, a new question-answering benchmark for testing social commonsense intelligence. Contrary to many prior benchmarks that focus on physical or taxonomic knowledge, Social IQa focuses on reasoning about people’s actions and their social implications. For example, given an action like "Jesse saw a concert" and a question like "Why did Jesse do this?", humans can easily infer that Jesse wanted "to see their favorite performer" or "to enjoy the music", and not "to see what's happening inside" or "to see if it works". The actions in Social IQa span a wide variety of social situations, and answer candidates contain both human-curated answers and adversarially-filtered machine-generated candidates. Social IQa contains over 37,000 QA pairs for evaluating models’ abilities to reason about the social implications of everyday events and situations. (Less)
18
+ """
19
+ _URL = "https://storage.googleapis.com/ai2-mosaic/public/socialiqa/socialiqa-train-dev.zip"
20
+
21
+
22
+ class SocialIQa(datasets.GeneratorBasedBuilder):
23
+ """TODO(social_i_qa): Short description of my dataset."""
24
+
25
+ # TODO(social_i_qa): Set up version.
26
+ VERSION = datasets.Version("0.1.0")
27
+
28
+ def _info(self):
29
+ # TODO(social_i_qa): Specifies the datasets.DatasetInfo object
30
+ return datasets.DatasetInfo(
31
+ # This is the description that will appear on the datasets page.
32
+ description=_DESCRIPTION,
33
+ # datasets.features.FeatureConnectors
34
+ features=datasets.Features(
35
+ {
36
+ # These are the features of your dataset like images, labels ...
37
+ "context": datasets.Value("string"),
38
+ "question": datasets.Value("string"),
39
+ "answerA": datasets.Value("string"),
40
+ "answerB": datasets.Value("string"),
41
+ "answerC": datasets.Value("string"),
42
+ "label": datasets.Value("string"),
43
+ }
44
+ ),
45
+ # If there's a common (input, target) tuple from the features,
46
+ # specify them here. They'll be used if as_supervised=True in
47
+ # builder.as_dataset.
48
+ supervised_keys=None,
49
+ # Homepage of the dataset for documentation
50
+ homepage="https://leaderboard.allenai.org/socialiqa/submissions/get-started",
51
+ citation=_CITATION,
52
+ )
53
+
54
+ def _split_generators(self, dl_manager):
55
+ """Returns SplitGenerators."""
56
+ # TODO(social_i_qa): Downloads the data and defines the splits
57
+ # dl_manager is a datasets.download.DownloadManager that can be used to
58
+ # download and extract URLs
59
+ dl_dir = dl_manager.download_and_extract(_URL)
60
+ dl_dir = os.path.join(dl_dir, "socialiqa-train-dev")
61
+ return [
62
+ datasets.SplitGenerator(
63
+ name=datasets.Split.TRAIN,
64
+ # These kwargs will be passed to _generate_examples
65
+ gen_kwargs={
66
+ "filepath": os.path.join(dl_dir, "train.jsonl"),
67
+ "labelpath": os.path.join(dl_dir, "train-labels.lst"),
68
+ },
69
+ ),
70
+ datasets.SplitGenerator(
71
+ name=datasets.Split.VALIDATION,
72
+ # These kwargs will be passed to _generate_examples
73
+ gen_kwargs={
74
+ "filepath": os.path.join(dl_dir, "dev.jsonl"),
75
+ "labelpath": os.path.join(dl_dir, "dev-labels.lst"),
76
+ },
77
+ ),
78
+ ]
79
+
80
+ def _generate_examples(self, filepath, labelpath):
81
+ """Yields examples."""
82
+ # TODO(social_i_qa): Yields (key, example) tuples from the dataset
83
+ with open(labelpath, encoding="utf-8") as f:
84
+ labels = [label for label in f]
85
+ with open(filepath, encoding="utf-8") as f1:
86
+ for id_, row in enumerate(f1):
87
+ data = json.loads(row)
88
+ label = labels[id_]
89
+ context = data["context"]
90
+ answerA = data["answerA"]
91
+ answerB = data["answerB"]
92
+ answerC = data["answerC"]
93
+ question = data["question"]
94
+ yield id_, {
95
+ "context": context,
96
+ "question": question,
97
+ "answerA": answerA,
98
+ "answerB": answerB,
99
+ "answerC": answerC,
100
+ "label": label,
101
+ }