# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Multi-News dataset.""" import os import datasets _CITATION = """ @misc{alex2019multinews, title={Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model}, author={Alexander R. Fabbri and Irene Li and Tianwei She and Suyi Li and Dragomir R. Radev}, year={2019}, eprint={1906.01749}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """ Multi-News, consists of news articles and human-written summaries of these articles from the site newser.com. Each summary is professionally written by editors and includes links to the original articles cited. There are two features: - document: text of news articles seperated by special token "|||||". - summary: news summary. """ _URL = "https://drive.google.com/uc?export=download&id=1vRY2wM6rlOZrf9exGTm5pXj5ExlVwJ0C" _DOCUMENT = "document" _SUMMARY = "summary" class MultiNews(datasets.GeneratorBasedBuilder): """Multi-News dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}), supervised_keys=(_DOCUMENT, _SUMMARY), homepage="https://github.com/Alex-Fabbri/Multi-News", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" extract_path = os.path.join(dl_manager.download_and_extract(_URL), "multi-news-original") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"path": os.path.join(extract_path, "train")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"path": os.path.join(extract_path, "val")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"path": os.path.join(extract_path, "test")}, ), ] def _generate_examples(self, path=None): """Yields examples.""" with open(os.path.join(path + ".src"), encoding="utf-8") as src_f, open( os.path.join(path + ".tgt"), encoding="utf-8" ) as tgt_f: for i, (src_line, tgt_line) in enumerate(zip(src_f, tgt_f)): yield i, { # In original file, each line has one example and natural newline # tokens "\n" are being replaced with "NEWLINE_CHAR". Here restore # the natural newline token to avoid special vocab "NEWLINE_CHAR". _DOCUMENT: src_line.strip().replace("NEWLINE_CHAR", "\n"), _SUMMARY: tgt_line.strip(), }