--- license: cc-by-4.0 language: - as - bn - gu - hi - kn - ml - mr - ta - te - en pretty_name: NPTEL extra_gated_fields: Name: text Email: text Affiliation: text Position: text size_categories: - 10K GitHub ArXiv CC BY 4.0 ## Dataset Description - **Homepage:** [Bhasaanuvaad Collection](https://huggingface.co./collections/ai4bharat/bhasaanuvaad-672b3790b6470eab68b1cb87) - **Repository:** [Github](https://github.com/AI4Bharat/BhasaAnuvaad) - **Paper:** [BhasaAnuvaad: A Speech Translation Dataset for 13 Indian Languages ](https://arxiv.org/abs/2411.04699) ## Overview BhasaAnuvaad, is the largest Indic-language AST dataset spanning over 44,400 hours of speech and 17M text segments for 13 of 22 scheduled Indian languages and English. This repository consists of parallel data for Speech Translation from [NPTEL](https://nptel.ac.in/), a subset of BhasaAnuvaad. ### How to use The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function. - Before downloading first follow the following steps: 1. Gain access to the dataset and get the HF access token from: [https://huggingface.co./settings/tokens](https://huggingface.co./settings/tokens). 2. Install dependencies and login HF: - Install Python - Run `pip install librosa soundfile datasets huggingface_hub[cli]` - Login by `huggingface-cli login` and paste the HF access token. Check [here](https://huggingface.co./docs/huggingface_hub/guides/cli#huggingface-cli-login) for details. For example, to download the (indic2en or en2indic) config, simply specify the corresponding config name (i.e., "indic2en" for Hindi): ```python from datasets import load_dataset bhasaanuvaad = load_dataset("ai4bharat/NPTEL", "indic2en", split="hindi") ``` or ```python from datasets import load_dataset bhasaanuvaad = load_dataset("ai4bharat/NPTEL", "en2indic", split="en2indic") ``` Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk. ```python from datasets import load_dataset bhasaanuvaad = load_dataset("ai4bharat/NPTEL", "indic2en", split="hindi", streaming=True) print(next(iter(bhasaanuvaad))) ``` ## Citation If you use BhasaAnuvaad in your work, please cite us: ```bibtex @article{jain2024bhasaanuvaad, title = {BhasaAnuvaad: A Speech Translation Dataset for 14 Indian Languages}, author = {Sparsh Jain and Ashwin Sankar and Devilal Choudhary and Dhairya Suman and Nikhil Narasimhan and Mohammed Safi Ur Rahman Khan and Anoop Kunchukuttan and Mitesh M Khapra and Raj Dabre}, year = {2024}, journal = {arXiv preprint arXiv: 2411.04699} } ``` ## License This dataset is released under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). ## Contact For any questions or feedback, please contact: - Raj Dabre (raj.dabre@cse.iitm.ac.in) - Sparsh Jain (sjshiva8287@gmail.com) - Ashwin Sankar (ashwins1211@gmail.com) - Nikhil Narasimhan (nikhil.narasimhan99@gmail.com) - Mohammed Safi Ur Rahman Khan (safikhan2000@gmail.com) Please contact us for any copyright concerns. ## Links - [GitHub Repository 💻](https://github.com/AI4Bharat/BhasaAnuvaad.git) - [Paper 📄](http://arxiv.org/abs/2411.04699) - [Hugging Face Dataset 🤗](https://huggingface.co./collections/ai4bharat/bhasaanuvaad-672b3790b6470eab68b1cb87)