Datasets:
File size: 5,230 Bytes
4db92e2 56c71a8 4db92e2 cc83c4d 4db92e2 56c71a8 4db92e2 0474194 0ec3b9d 56c71a8 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 214a807 0474194 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 56c71a8 4db92e2 0474194 4db92e2 0474194 4db92e2 0474194 4db92e2 0474194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
annotations_creators: []
language: en
size_categories:
- n<1K
task_categories:
- image-segmentation
task_ids: []
pretty_name: SkyScenes
tags:
- fiftyone
- group
- image-segmentation
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 280 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = load_from_hub("Voxel51/SkyScenes")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for SkyScenes

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 280 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("Voxel51/SkyScenes")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
SkyScenes is a comprehensive synthetic dataset for aerial scene understanding that was recently accepted to ECCV 2024. The dataset contains 33,600 aerial images captured from UAV perspectives using the CARLA simulator.
The original repo on the Hub can be found [here](https://huggingface.co./datasets/hoffman-lab/SkyScenes).
- **Curated by:** [Sahil Khose](https://sahilkhose.github.io/), Anisha Pal, Aayushi Agarwal, Deepanshi, Judy Hoffman, Prithvijit Chattopadhyay
- **Funded by:** Georgia Institute of Technology
- **Shared by:** [Harpreet Sahota](https://huggingface.co./harpreetsahota), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:** MIT License
### Dataset Structure
- **Images**: RGB images captured across multiple variations:
- 8 different town layouts (7 urban + 1 rural)
- 5 weather/time conditions (ClearNoon, ClearSunset, ClearNight, CloudyNoon, MidRainyNoon)
- 12 viewpoint combinations (3 heights × 4 pitch angles)
### Annotations
Each image comes with dense pixel-level annotations for:
- Semantic segmentation (28 classes)
- Instance segmentation
- Depth information
### Key Variations
- **Heights**: 15m, 35m, 60m
- **Pitch Angles**: 0°, 45°, 60°, 90°
- **Weather/Time**: Various conditions to test robustness
- **Layouts**: Different urban and rural environments
### NOTE: This repo contains only a subset of the full dataset:
- **Heights & Pitch Angles**:
- H_15_P_0 (15m height, 0° pitch)
- H_35_P_0 (35m height, 0° pitch)
- H_60_P_0 (60m height, 0° pitch)
- **Weather Condition**: ClearNoon only
- **Town Layouts**: Town01, Town02, Town05, Town07
- **Data Modalities**:
- RGB Images
- Depth Maps
- Semantic Segmentation
If you wish to work with the full dataset in FiftyOne format, you can use the [following repo](https://github.com/harpreetsahota204/skyscenes-to-fiftyone).
### Dataset Sources
- **Repository:** https://github.com/hoffman-group/SkyScenes
- **Paper:** https://arxiv.org/abs/2312.06719
- **Demo:** https://hoffman-group.github.io/SkyScenes/
# Uses
The dataset contains 33.6k densely annotated synthetic aerial images with comprehensive metadata and annotations, making it suitable for both training and systematic evaluation of aerial scene understanding models.
## Training and Pre-training
- Functions as a pre-training dataset for real-world aerial scene understanding models
- Models trained on SkyScenes demonstrate strong generalization to real-world scenarios
- Can effectively augment real-world training data to improve overall model performance
## Model Evaluation and Testing
**Diagnostic Testing**
- Serves as a test bed for assessing model sensitivity to various conditions including:
- Weather changes
- Time of day variations
- Different pitch angles
- Various altitudes
- Different layout types
**Multi-modal Development**
- Enables development of multi-modal segmentation models by incorporating depth information alongside visual data
- Supports testing how additional sensor modalities can improve aerial scene recognition capabilities
## Research Applications
- Enables studying synthetic-to-real domain adaptation for aerial imagery
- Provides controlled variations for analyzing model behavior under different viewing conditions
- Supports development of models for:
- Semantic segmentation
- Instance segmentation
- Depth estimation
## References
- [SkyScenes Dataset on HuggingFace](https://huggingface.co./datasets/hoffman-lab/SkyScenes)
- [SkyScenes Official Website](https://hoffman-group.github.io/SkyScenes/)
## Citation
```bibex
@misc{khose2023skyscenes,
title={SkyScenes: A Synthetic Dataset for Aerial Scene Understanding},
author={Sahil Khose and Anisha Pal and Aayushi Agarwal and Deepanshi and Judy Hoffman and Prithvijit Chattopadhyay},
year={2023},
eprint={2312.06719},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |