|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{nguyen2020vitext2sql, |
|
title = {{A Pilot Study of Text-to-SQL Semantic Parsing for Vietnamese}}, |
|
author = {Anh Tuan Nguyen and Mai Hoang Dao and Dat Quoc Nguyen}, |
|
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020}, |
|
year = {2020}, |
|
pages = {4079--4085} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vitext2sql" |
|
|
|
_DESCRIPTION = """\ |
|
This is the first public large-scale Text-to-SQL semantic parsing dataset for Vietnamese. |
|
The dataset is created by manually translating the Spider dataset into Vietnamese. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/VinAIResearch/ViText2SQL" |
|
|
|
_LICENSE = f"""{Licenses.OTHERS.value} | |
|
By downloading the ViText2SQL dataset, USER agrees: |
|
1. to use ViText2SQL for research or educational purposes only. |
|
2. to not distribute ViText2SQL or part of ViText2SQL in any original or modified form. |
|
3. and to cite our EMNLP-2020 Findings paper above whenever ViText2SQL is employed to help produce published results. |
|
Copyright (c) 2020 VinAI Research |
|
THE DATA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE DATA OR THE USE OR OTHER DEALINGS IN THE |
|
DATA. |
|
""" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_URLS = { |
|
"word-level": { |
|
"train": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/word-level/train.json", |
|
"test": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/word-level/test.json", |
|
"validation": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/word-level/dev.json", |
|
}, |
|
"syllable-level": { |
|
"train": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/syllable-level/train.json", |
|
"test": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/syllable-level/test.json", |
|
"validation": "https://raw.githubusercontent.com/VinAIResearch/ViText2SQL/master/data/syllable-level/dev.json", |
|
}, |
|
} |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["vie"] |
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ViText2SQLDataset(datasets.GeneratorBasedBuilder): |
|
"""Vitext2sql dataset is a Text-to-SQL semantic parsing dataset for Vietnamese.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description="Vitext2sql word level source schema", |
|
schema="source", |
|
subset_id="vitext2sql", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source_syllable", |
|
version=SOURCE_VERSION, |
|
description="Vitext2sql syllable level source schema", |
|
schema="source", |
|
subset_id="vitext2sql", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description="Vitext2sql SEACrowd schema for word-level", |
|
schema="seacrowd_t2t", |
|
subset_id="vitext2sql", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_syllable_t2t", |
|
version=SEACROWD_VERSION, |
|
description="Vitext2sql SEACrowd schema for syllable-level", |
|
schema="seacrowd_t2t", |
|
subset_id="vitext2sql", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "vitext2sql_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
|
|
|
|
features = datasets.Features( |
|
{ |
|
"db_id": datasets.Value("string"), |
|
"query": datasets.Value("string"), |
|
"query_toks": [datasets.Value("string")], |
|
"query_toks_no_value": [datasets.Value("string")], |
|
"question": datasets.Value("string"), |
|
"question_toks": [datasets.Value("string")], |
|
"sql": datasets.Value("large_string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
if "syllable" in self.config.name: |
|
level_urls = _URLS["syllable-level"] |
|
else: |
|
level_urls = _URLS["word-level"] |
|
|
|
data_files = dl_manager.download_and_extract(level_urls) |
|
split_generators = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_files["test"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_files["validation"], |
|
}, |
|
), |
|
] |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
df = pd.read_json(filepath) |
|
if self.config.schema == "source": |
|
for i, row in df.iterrows(): |
|
entry = {"db_id": row["db_id"], "query": row["query"], "query_toks": row["query_toks"], "query_toks_no_value": row["query_toks_no_value"], "question": row["question"], "question_toks": row["question_toks"], "sql": str(row["sql"])} |
|
yield i, entry |
|
elif self.config.schema == "seacrowd_t2t": |
|
for i, row in df.iterrows(): |
|
entry = { |
|
"id": str(i), |
|
"text_1": row["question"], |
|
"text_2": row["query"], |
|
"text_1_name": "question", |
|
"text_2_name": "sql_query", |
|
} |
|
yield i, entry |
|
|