import os from pathlib import Path from typing import Dict, List import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks _CITATION = """\ @article{published_papers/22434604, title = {TUFS Asian Language Parallel Corpus (TALPCo)}, author = {Hiroki Nomoto and Kenji Okano and David Moeljadi and Hideo Sawada}, journal = {言語処理学会 第24回年次大会 発表論文集}, pages = {436--439}, year = {2018} } @article{published_papers/22434603, title = {Interpersonal meaning annotation for Asian language corpora: The case of TUFS Asian Language Parallel Corpus (TALPCo)}, author = {Hiroki Nomoto and Kenji Okano and Sunisa Wittayapanyanon and Junta Nomura}, journal = {言語処理学会 第25回年次大会 発表論文集}, pages = {846--849}, year = {2019} } """ _DATASETNAME = "talpco" _DESCRIPTION = """\ The TUFS Asian Language Parallel Corpus (TALPCo) is an open parallel corpus consisting of Japanese sentences and their translations into Korean, Burmese (Myanmar; the official language of the Republic of the Union of Myanmar), Malay (the national language of Malaysia, Singapore and Brunei), Indonesian, Thai, Vietnamese and English. """ _HOMEPAGE = "https://github.com/matbahasa/TALPCo" _LOCAL = False _LANGUAGES = ["eng", "ind", "jpn", "kor", "myn", "tha", "vie", "zsm"] _LICENSE = "CC-BY 4.0" _URLS = { _DATASETNAME: "https://github.com/matbahasa/TALPCo/archive/refs/heads/master.zip", } _SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" def seacrowd_config_constructor(lang_source, lang_target, schema, version): """Construct SEACrowdConfig with talpco_{lang_source}_{lang_target}_{schema} as the name format""" if schema != "source" and schema != "seacrowd_t2t": raise ValueError(f"Invalid schema: {schema}") if lang_source == "" and lang_target == "": return SEACrowdConfig( name="talpco_{schema}".format(schema=schema), version=datasets.Version(version), description="talpco with {schema} schema for all 7 language pairs from / to ind language".format(schema=schema), schema=schema, subset_id="talpco", ) else: return SEACrowdConfig( name="talpco_{lang_source}_{lang_target}_{schema}".format(lang_source=lang_source, lang_target=lang_target, schema=schema), version=datasets.Version(version), description="talpco with {schema} schema for {lang_source} source language and {lang_target} target language".format(lang_source=lang_source, lang_target=lang_target, schema=schema), schema=schema, subset_id="talpco", ) class TALPCo(datasets.GeneratorBasedBuilder): """TALPCo datasets contains 1372 datasets in 8 languages""" BUILDER_CONFIGS = ( [seacrowd_config_constructor(lang1, lang2, "source", _SOURCE_VERSION) for lang1 in _LANGUAGES for lang2 in _LANGUAGES if lang1 != lang2] + [seacrowd_config_constructor(lang1, lang2, "seacrowd_t2t", _SEACROWD_VERSION) for lang1 in _LANGUAGES for lang2 in _LANGUAGES if lang1 != lang2] + [seacrowd_config_constructor("", "", "source", _SOURCE_VERSION), seacrowd_config_constructor("", "", "seacrowd_t2t", _SEACROWD_VERSION)] ) DEFAULT_CONFIG_NAME = "talpco_jpn_ind_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source" or self.config.schema == "seacrowd_t2t": features = schemas.text2text_features else: raise ValueError(f"Invalid config schema: {self.config.schema}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls = _URLS[_DATASETNAME] base_path = Path(dl_manager.download_and_extract(urls)) / "TALPCo-master" data = {} for lang in _LANGUAGES: lang_file_name = "data_" + lang + ".txt" lang_file_path = base_path / lang / lang_file_name if os.path.isfile(lang_file_path): with open(lang_file_path, "r") as file: data[lang] = file.read().strip("\n").split("\n") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": data, "split": "train", }, ), ] def _generate_examples(self, data: Dict, split: str): if self.config.schema != "source" and self.config.schema != "seacrowd_t2t": raise ValueError(f"Invalid config schema: {self.config.schema}") if self.config.name == "talpco_source" or self.config.name == "talpco_seacrowd_t2t": # load all 7 language pairs from / to ind language lang_target = "ind" for lang_source in _LANGUAGES: if lang_source == lang_target: continue for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data): yield language_pair_data lang_source = "ind" for lang_target in _LANGUAGES: if lang_source == lang_target: continue for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data): yield language_pair_data else: _, lang_source, lang_target = self.config.name.replace(f"_{self.config.schema}", "").split("_") for language_pair_data in self.generate_language_pair_data(lang_source, lang_target, data): yield language_pair_data def generate_language_pair_data(self, lang_source, lang_target, data): dict_source = {} for row in data[lang_source]: id, text = row.split("\t") dict_source[id] = text dict_target = {} for row in data[lang_target]: id, text = row.split("\t") dict_target[id] = text all_ids = set([k for k in dict_source.keys()] + [k for k in dict_target.keys()]) dict_merged = {k: [dict_source.get(k), dict_target.get(k)] for k in all_ids} for id in sorted(all_ids): ex = { "id": lang_source + "_" + lang_target + "_" + id, "text_1": dict_merged[id][0], "text_2": dict_merged[id][1], "text_1_name": lang_source, "text_2_name": lang_target, } yield lang_source + "_" + lang_target + "_" + id, ex