holylovenia
commited on
Commit
•
3705e99
1
Parent(s):
ea6dffc
Upload malindo_parallel.py with huggingface_hub
Browse files- malindo_parallel.py +191 -0
malindo_parallel.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
This template serves as a starting point for contributing a dataset to the SEACrowd Datahub repo.
|
18 |
+
|
19 |
+
|
20 |
+
Full documentation on writing dataset loading scripts can be found here:
|
21 |
+
https://huggingface.co/docs/datasets/add_dataset.html
|
22 |
+
|
23 |
+
To create a dataset loading script you will create a class and implement 3 methods:
|
24 |
+
* `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object.
|
25 |
+
* `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split.
|
26 |
+
* `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`.
|
27 |
+
|
28 |
+
"""
|
29 |
+
import json
|
30 |
+
import os
|
31 |
+
from pathlib import Path
|
32 |
+
from typing import Dict, List, Tuple
|
33 |
+
|
34 |
+
import datasets
|
35 |
+
|
36 |
+
from seacrowd.utils import schemas
|
37 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
38 |
+
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
|
39 |
+
DEFAULT_SOURCE_VIEW_NAME, Tasks)
|
40 |
+
|
41 |
+
_CITATION = """\
|
42 |
+
@misc{MALINDO-parallel,
|
43 |
+
title = "MALINDO-parallel",
|
44 |
+
howpublished = "https://github.com/matbahasa/MALINDO_Parallel/blob/master/README.md",
|
45 |
+
note = "Accessed: 2023-01-27",
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "malindo_parallel"
|
50 |
+
|
51 |
+
|
52 |
+
_DESCRIPTION = """\
|
53 |
+
Teks ini adalah skrip video untuk Kampus Terbuka Universiti Bahasa Asing Tokyo pada tahun 2020. Tersedia parallel sentences dalam Bahasa Melayu/Indonesia dan Bahasa Jepang
|
54 |
+
"""
|
55 |
+
|
56 |
+
|
57 |
+
_HOMEPAGE = "https://github.com/matbahasa/MALINDO_Parallel/tree/master/OpenCampusTUFS"
|
58 |
+
|
59 |
+
|
60 |
+
_LANGUAGES = ["zlm", "jpn"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
61 |
+
|
62 |
+
|
63 |
+
_LICENSE = "Creative Commons Attribution 4.0 (cc-by-4.0)"
|
64 |
+
|
65 |
+
|
66 |
+
_LOCAL = False
|
67 |
+
|
68 |
+
|
69 |
+
_URLS = {
|
70 |
+
_DATASETNAME: "https://raw.githubusercontent.com/matbahasa/MALINDO_Parallel/master/OpenCampusTUFS/OCTUFS2020.txt",
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
75 |
+
|
76 |
+
|
77 |
+
_SOURCE_VERSION = "1.0.0"
|
78 |
+
|
79 |
+
_SEACROWD_VERSION = "2024.06.20"
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
class MalindoParallelDataset(datasets.GeneratorBasedBuilder):
|
84 |
+
"""Data terjemahan bahasa Melayu/Indonesia"""
|
85 |
+
|
86 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
87 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
88 |
+
|
89 |
+
|
90 |
+
BUILDER_CONFIGS = [
|
91 |
+
SEACrowdConfig(
|
92 |
+
name="malindo_parallel_source",
|
93 |
+
version=SOURCE_VERSION,
|
94 |
+
description="malindo_parallel source schema",
|
95 |
+
schema="source",
|
96 |
+
subset_id="malindo_parallel",
|
97 |
+
),
|
98 |
+
SEACrowdConfig(
|
99 |
+
name="malindo_parallel_seacrowd_t2t",
|
100 |
+
version=SEACROWD_VERSION,
|
101 |
+
description="malindo_parallel SEACrowd schema",
|
102 |
+
schema="seacrowd_t2t",
|
103 |
+
subset_id="malindo_parallel",
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
DEFAULT_CONFIG_NAME = "malindo_parallel_source"
|
108 |
+
|
109 |
+
def _info(self) -> datasets.DatasetInfo:
|
110 |
+
|
111 |
+
if self.config.schema == "source":
|
112 |
+
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string")})
|
113 |
+
|
114 |
+
elif self.config.schema == "seacrowd_t2t":
|
115 |
+
features = schemas.text2text_features
|
116 |
+
|
117 |
+
return datasets.DatasetInfo(
|
118 |
+
description=_DESCRIPTION,
|
119 |
+
features=features,
|
120 |
+
homepage=_HOMEPAGE,
|
121 |
+
license=_LICENSE,
|
122 |
+
citation=_CITATION,
|
123 |
+
)
|
124 |
+
|
125 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
126 |
+
"""Returns SplitGenerators."""
|
127 |
+
|
128 |
+
urls = _URLS[_DATASETNAME]
|
129 |
+
data_dir = dl_manager.download_and_extract(urls)
|
130 |
+
|
131 |
+
return [
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TRAIN,
|
134 |
+
|
135 |
+
gen_kwargs={
|
136 |
+
"filepath": data_dir,
|
137 |
+
"split": "train",
|
138 |
+
},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
143 |
+
|
144 |
+
rows = []
|
145 |
+
temp_cols = None
|
146 |
+
with open(filepath) as file:
|
147 |
+
while line := file.readline():
|
148 |
+
if temp_cols is None:
|
149 |
+
cols = []
|
150 |
+
for col in line.split('\t'):
|
151 |
+
if len(col.strip('\n'))>0:
|
152 |
+
cols.append(col)
|
153 |
+
if len(cols) > 2:
|
154 |
+
correct_line = line.rstrip()
|
155 |
+
rows.append(correct_line)
|
156 |
+
else:
|
157 |
+
temp_cols = cols
|
158 |
+
else:
|
159 |
+
temp_cols.append(line)
|
160 |
+
correct_line = "\t".join(temp_cols).rstrip()
|
161 |
+
temp_cols = None
|
162 |
+
rows.append(correct_line)
|
163 |
+
|
164 |
+
if self.config.schema == "source":
|
165 |
+
|
166 |
+
for i, row in enumerate(rows):
|
167 |
+
t1idx = row.find("\t") + 1
|
168 |
+
t2idx = row[t1idx:].find("\t")
|
169 |
+
row_id = row[:t1idx]
|
170 |
+
row_melayu = row[t1idx : t1idx + t2idx]
|
171 |
+
row_japanese = row[t1idx + t2idx + 1 : -1]
|
172 |
+
ex = {"id": row_id.rstrip(),
|
173 |
+
"text": row_melayu + "\t" + row_japanese}
|
174 |
+
yield i, ex
|
175 |
+
|
176 |
+
elif self.config.schema == "seacrowd_t2t":
|
177 |
+
|
178 |
+
for i, row in enumerate(rows):
|
179 |
+
t1idx = row.find("\t") + 1
|
180 |
+
t2idx = row[t1idx:].find("\t")
|
181 |
+
row_id = row[:t1idx]
|
182 |
+
row_melayu = row[t1idx : t1idx + t2idx]
|
183 |
+
row_japanese = row[t1idx + t2idx + 1 : -1]
|
184 |
+
ex = {
|
185 |
+
"id": row_id.rstrip(),
|
186 |
+
"text_1": row_melayu,
|
187 |
+
"text_2": row_japanese,
|
188 |
+
"text_1_name": "zlm",
|
189 |
+
"text_2_name": "jpn",
|
190 |
+
}
|
191 |
+
yield i, ex
|