|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{palen-michel-lignos-2023-lr, |
|
author = {Palen-Michel, Chester and Lignos, Constantine}, |
|
title = {LR - Sum: Summarization for Less-Resourced Languages}, |
|
booktitle = {Findings of the Association for Computational Linguistics: ACL 2023}, |
|
year = {2023}, |
|
publisher = {Association for Computational Linguistics}, |
|
address = {Toronto, Canada}, |
|
doi = {10.18653/v1/2023.findings-acl.427}, |
|
pages = {6829--6844}, |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind", "khm", "lao", "mya", "tha", "vie"] |
|
|
|
_DATASETNAME = "lr_sum" |
|
_DESCRIPTION = """ |
|
LR-Sum is a news abstractive summarization dataset focused on low-resource languages. It contains human-written summaries |
|
for 39 languages and the data is based on the Multilingual Open Text corpus |
|
(ultimately derived from the Voice of America website). |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co./datasets/bltlab/lr-sum" |
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
_URL = "https://huggingface.co./datasets/bltlab/lr-sum" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class LRSumDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset of article-summary pairs for different low-resource languages.""" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema for {lang} language", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{lang}", |
|
) |
|
for lang in _LANGUAGES |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema for {lang} language", |
|
schema="seacrowd_t2t", |
|
subset_id=f"{_DATASETNAME}_{lang}", |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
|
|
|
|
BUILDER_CONFIGS.extend( |
|
[ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema for all languages", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema for all languages", |
|
schema="seacrowd_t2t", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
return [ |
|
datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) |
|
for split in ( |
|
datasets.Split.TRAIN, |
|
datasets.Split.VALIDATION, |
|
datasets.Split.TEST, |
|
) |
|
] |
|
|
|
def _load_hf_data_from_remote(self, lang: str, split: str) -> datasets.DatasetDict: |
|
"""Load dataset from HuggingFace.""" |
|
hf_remote_ref = "/".join(_URL.split("/")[-2:]) |
|
return datasets.load_dataset(hf_remote_ref, lang, split=split) |
|
|
|
def _generate_examples(self, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
lr_sum_datasets = [] |
|
|
|
lang = self.config.subset_id.split("_")[-1] |
|
if lang in _LANGUAGES: |
|
lr_sum_datasets.append(self._load_hf_data_from_remote(lang, split)) |
|
else: |
|
for lang in _LANGUAGES: |
|
lr_sum_datasets.append(self._load_hf_data_from_remote(lang, split)) |
|
|
|
index = 0 |
|
for lang_subset in lr_sum_datasets: |
|
for row in lang_subset: |
|
if self.config.schema == "source": |
|
example = row |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
example = { |
|
"id": str(index), |
|
"text_1": row["text"], |
|
"text_2": row["summary"], |
|
"text_1_name": "document", |
|
"text_2_name": "summary", |
|
} |
|
yield index, example |
|
index += 1 |
|
|