# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """TODO: Add a description here.""" import json import os from typing import Dict, List from PIL import Image import datasets from datasets import DownloadManager # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2020} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { # "first_domain": "https://huggingface.co./great-new-dataset-first_domain.zip", # "second_domain": "https://huggingface.co./great-new-dataset-second_domain.zip", } _BASE_URL = "" def get_download_url(config_name: str, partition: str) -> str: """Get download URL based on config name and parition (train/dev/test) Args: config_name (str): can be "v1", "v2",... partition (str): can be "train", "dev" or "test" Returns: str: URL to download file """ return f"https://huggingface.co./datasets/RGBD-SOD/rgbdsod_datasets/resolve/main/data/{config_name}/{partition}.zip" # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class Test(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ datasets.BuilderConfig( name="v1", version=VERSION, description="RGB-D SOD Set 1", ), # datasets.BuilderConfig( # name="v2", # version=VERSION, # description="RGB-D SOD Set 2", # ), ] DEFAULT_CONFIG_NAME = "v1" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=datasets.Features( { "depth": datasets.Image(), "rgb": datasets.Image(), "gt": datasets.Image(), "name": datasets.Value("string"), # These are the features of your dataset like images, labels ... } ), # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager: DownloadManager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive train_dir = dl_manager.download_and_extract( get_download_url(self.config.name, "train") ) dev_dir = dl_manager.download_and_extract( get_download_url(self.config.name, "dev") ) # test_dir = dl_manager.download_and_extract( # get_download_url(self.config.name, "test") # ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"dir_path": train_dir}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"dir_path": dev_dir}, ), # datasets.SplitGenerator( # name=datasets.Split.TEST, # # These kwargs will be passed to _generate_examples # gen_kwargs={"dir_path": test_dir}, # ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, dir_path: str): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(os.path.join(dir_path, "metadata.json"), "r") as f: json_object = json.load(f) metadata: List[Dict[str, str]] = json_object["metadata"] for key, row in enumerate(metadata): yield key, { "name": row["name"], "rgb": Image.open(os.path.join(dir_path, row["rgb"])).convert("RGB"), "gt": Image.open(os.path.join(dir_path, row["gt"])).convert("L"), "depth": Image.open(os.path.join(dir_path, row["depth"])).convert("L"), }