# coding=utf-8 # Copyright 2022 The PolyAI and HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import os import datasets logger = datasets.logging.get_logger(__name__) """ EVI Dataset""" _CITATION = """\ @inproceedings{Spithourakis2022evi, author = {Georgios P. Spithourakis and Ivan Vuli\'{c} and Micha\l{} Lis and I\~{n}igo Casanueva and Pawe\l{} Budzianowski}, title = {{EVI}: Multilingual Spoken Dialogue Tasks and Dataset for Knowledge-Based Enrolment, Verification, and Identification}, year = {2022}, note = {Data available at https://github.com/PolyAI-LDN/evi-paper}, url = {https://arxiv.org/abs/2204.13496}, booktitle = {Findings of NAACL (publication pending)} } """ # noqa _ALL_CONFIGS = sorted([ "en-GB", "fr-FR", "pl-PL" ]) _DESCRIPTION = "EVI is a dataset for enrolment, identification, and verification" # noqa _HOMEPAGE_URL = "https://arxiv.org/abs/2204.13496" _AUDIO_DATA_URL = "https://poly-public-data.s3.eu-west-2.amazonaws.com/evi-paper/audios.zip" # noqa _VERSION = datasets.Version("0.0.5", "") class EviConfig(datasets.BuilderConfig): """BuilderConfig for EVI""" def __init__( self, name, version, description, homepage, audio_data_url ): super().__init__( name=self.name, version=version, description=self.description, ) self.name = name self.description = description self.homepage = homepage self.audio_data_url = audio_data_url def _build_config(name): return EviConfig( name=name, version=_VERSION, description=_DESCRIPTION, homepage=_HOMEPAGE_URL, audio_data_url=_AUDIO_DATA_URL, ) class Evi(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 1000 BUILDER_CONFIGS = [ _build_config(name) for name in _ALL_CONFIGS ] def _info(self): task_templates = None langs = _ALL_CONFIGS features = datasets.Features( { "lang_id": datasets.ClassLabel(names=langs), "dialogue_id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "turn_id": datasets.Value("int32"), # "target_profile_id": datasets.Value("string"), # "asr_transcription": datasets.Value("string"), "asr_nbest": datasets.Sequence(datasets.Value("string")), # "path": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=8_000), } ) return datasets.DatasetInfo( version=self.config.version, description=self.config.description, homepage=self.config.homepage, license="CC-BY-4.0", citation=_CITATION, features=features, supervised_keys=None, task_templates=task_templates, ) def _split_generators(self, dl_manager): langs = ([self.config.name]) #audio_path = dl_manager.download_and_extract( # self.config.audio_data_url #) audio_path = "" text_path = "" lang2text_path = { _lang: os.path.join( text_path, f"dialogues.{_lang.split('-')[0]}.csv" ) for _lang in langs } lang2audio_path = { _lang: os.path.join( audio_path, f"{_lang.split('-')[0]}" ) for _lang in langs } return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "audio_paths": lang2audio_path, "text_paths": lang2text_path, }, ) ] def _generate_examples(self, audio_paths, text_paths): key = 0 for lang in text_paths.keys(): text_path = text_paths[lang] audio_path = audio_paths[lang] with open(text_path, encoding="utf-8") as fin: reader = csv.DictReader( fin, delimiter=",", skipinitialspace=True ) for dictrow in reader: dialogue_id = dictrow["dialogue_id"] turn_id = dictrow["turn_num"] file_path = os.path.join( audio_path, dialogue_id, f'{turn_id}.wav' ) if not os.path.isfile(file_path): file_path = None example = { "lang_id": _ALL_CONFIGS.index(lang), "dialogue_id": dialogue_id, "speaker_id": dictrow["speaker_id"], "turn_id": turn_id, "target_profile_id": dictrow["scenario_id"], "asr_transcription": dictrow["transcription"], "asr_nbest": json.loads(dictrow["nbest"]), "path": file_path, "audio": file_path, } print(example) yield key, example key += 1