mikonvergence
commited on
Create extras/thumbnail_dem.py
Browse files- extras/thumbnail_dem.py +77 -0
extras/thumbnail_dem.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
NOTE: Major TOM standard does not require any specific type of thumbnail to be computed.
|
3 |
+
|
4 |
+
Instead these are shared as optional help since this is how the Core dataset thumbnails have been computed.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from rasterio.io import MemoryFile
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
from pathlib import Path
|
12 |
+
import rasterio as rio
|
13 |
+
from matplotlib.colors import LightSource
|
14 |
+
|
15 |
+
def get_grayscale(x):
|
16 |
+
"""
|
17 |
+
Normalized grayscale visualisation
|
18 |
+
"""
|
19 |
+
|
20 |
+
# normalize
|
21 |
+
x_n = x-x.min()
|
22 |
+
x_n = x_n/x_n.max()
|
23 |
+
|
24 |
+
return np.uint8(x_n*255)
|
25 |
+
|
26 |
+
def get_hillshade(x, azdeg=315, altdeg=45,ve=1):
|
27 |
+
"""
|
28 |
+
Hillshade visualisation for DEM
|
29 |
+
"""
|
30 |
+
ls = LightSource(azdeg=azdeg, altdeg=altdeg)
|
31 |
+
|
32 |
+
return np.uint8(255*ls.hillshade(x, vert_exag=ve))
|
33 |
+
|
34 |
+
def dem_thumbnail(dem, dem_NODATA = -32768.0, hillshade=True):
|
35 |
+
"""
|
36 |
+
Takes vv and vh numpy arrays along with the corresponding NODATA values (default is -32768.0)
|
37 |
+
|
38 |
+
Returns a numpy array with the thumbnail
|
39 |
+
"""
|
40 |
+
if hillshade:
|
41 |
+
return get_hillshade(dem)
|
42 |
+
else:
|
43 |
+
return get_grayscale(dem)
|
44 |
+
|
45 |
+
|
46 |
+
def dem_thumbnail_from_datarow(datarow):
|
47 |
+
"""
|
48 |
+
Takes a datarow directly from one of the data parquet files
|
49 |
+
|
50 |
+
Returns a PIL Image
|
51 |
+
"""
|
52 |
+
|
53 |
+
with MemoryFile(datarow['DEM'][0].as_py()) as mem_f:
|
54 |
+
with mem_f.open(driver='GTiff') as f:
|
55 |
+
dem=f.read().squeeze()
|
56 |
+
dem_NODATA = f.nodata
|
57 |
+
|
58 |
+
img = dem_thumbnail(dem, dem_NODATA)
|
59 |
+
|
60 |
+
return Image.fromarray(img,'L')
|
61 |
+
|
62 |
+
if __name__ == '__main__':
|
63 |
+
from fsspec.parquet import open_parquet_file
|
64 |
+
import pyarrow.parquet as pq
|
65 |
+
|
66 |
+
print('[example run] reading file from HuggingFace...')
|
67 |
+
url = "https://huggingface.co/datasets/Major-TOM/Core-DEM/resolve/main/images/part_01001.parquet"
|
68 |
+
with open_parquet_file(url) as f:
|
69 |
+
with pq.ParquetFile(f) as pf:
|
70 |
+
first_row_group = pf.read_row_group(1)
|
71 |
+
|
72 |
+
print('[example run] computing the thumbnail...')
|
73 |
+
thumbnail = dem_thumbnail_from_datarow(first_row_group)
|
74 |
+
|
75 |
+
thumbnail_fname = 'example_thumbnail.png'
|
76 |
+
thumbnail.save(thumbnail_fname, format = 'PNG')
|
77 |
+
print('[example run] saved as "{}"'.format(thumbnail_fname))
|