Datasets:
File size: 3,182 Bytes
9b6e517 6e3791f 69be80d 6e3791f 93a6760 6e3791f 99ccef4 9b6e517 5d8d0c7 9b6e517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
annotations_creators:
- other
language_creators:
- other
languages:
- sv
- da
- nb
licenses:
- cc-by-4.0
multilinguality:
- translation
pretty_name: overlim
size_categories:
- unknown
source_datasets:
- extended|glue
- extended|super_glue
task_categories:
- text-classification
- text-scoring
task_ids:
- natural-language-inference
- semantic-similarity-classification
- sentiment-classification
- text-classification-other-paraphrase-identification
- text-classification-other-qa-nli
---
# Dataset Card for OverLim
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The _OverLim_ dataset contains some of the GLUE and SuperGLUE tasks automatically
translated to Swedish, Danish, and Norwegian (bokmål), using the OpusMT models
for MarianMT.
The translation quality was not manually checked and may thus be faulty.
Results on these datasets should thus be interpreted carefully.
### Supported Tasks and Leaderboards
The data contains the following tasks from GLUE and SuperGLUE:
- GLUE
- `mnli`
- `mrpc`
- `qnli`
- `qqp`
- `rte`
- `sst`
- `stsb`
- `wnli`
- SuperGLUE
- `boolq`
- `cb`
- `copa`
- `rte`
### Languages
- Swedish
- Danish
- Norwegian (bokmål)
## Dataset Structure
### Data Instances
Every task has their own set of features, but all share an `idx` and `label`.
- GLUE
- `mnli`
- `premise`, `hypothesis`
- `mrpc`
- `text_a`, `text_b`
- `qnli`
- `premise`, `hypothesis`
- `qqp`
- `text_a`, `text_b`
- `sst`
- `text`
- `stsb`
- `text_a`, `text_b`
- `wnli`
- `premise`, `hypothesis`
- SuperGLUE
- `boolq`
- `question`, `passage`
- `cb`
- `premise`, `hypothesis`
- `copa`
- `premise`, `choice1`, `choice2`, `question`
- `rte`
- `premise`, `hypothesis`
### Data Splits
In order to have test-split, we repurpose the original validation-split as
test-split, and split the training-split into a new training- and
validation-split, with an 80-20 distribution.
## Dataset Creation
For more information about the individual tasks see (https://gluebenchmark.com) and (https://super.gluebenchmark.com).
### Curation Rationale
Training non-English models is easy, but there is a lack of evaluation datasets to compare their actual performance.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@robinqrtz](https://github.com/robinqrtz) for adding this dataset.
|