File size: 3,182 Bytes
9b6e517
6e3791f
 
 
 
 
 
 
 
 
 
 
 
 
 
69be80d
6e3791f
 
 
 
 
 
 
 
 
 
 
 
93a6760
6e3791f
99ccef4
9b6e517
 
 
 
 
 
 
5d8d0c7
9b6e517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
annotations_creators:
- other
language_creators:
- other
languages:
- sv
- da
- nb
licenses:
- cc-by-4.0
multilinguality:
- translation
pretty_name: overlim
size_categories:
- unknown
source_datasets:
- extended|glue
- extended|super_glue
task_categories:
- text-classification
- text-scoring
task_ids:
- natural-language-inference
- semantic-similarity-classification
- sentiment-classification
- text-classification-other-paraphrase-identification
- text-classification-other-qa-nli
---

# Dataset Card for OverLim

## Dataset Description

- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

The _OverLim_ dataset contains some of the GLUE and SuperGLUE tasks automatically
translated to Swedish, Danish, and Norwegian (bokmål), using the OpusMT models
for MarianMT.

The translation quality was not manually checked and may thus be faulty.
Results on these datasets should thus be interpreted carefully.

### Supported Tasks and Leaderboards

The data contains the following tasks from GLUE and SuperGLUE:

- GLUE
  - `mnli`
  - `mrpc`
  - `qnli`
  - `qqp`
  - `rte`
  - `sst`
  - `stsb`
  - `wnli`
- SuperGLUE
  - `boolq`
  - `cb`
  - `copa`
  - `rte`

### Languages

- Swedish
- Danish
- Norwegian (bokmål)

## Dataset Structure

### Data Instances

Every task has their own set of features, but all share an `idx` and `label`.

- GLUE
  - `mnli`
    - `premise`, `hypothesis`
  - `mrpc`
    - `text_a`, `text_b`
  - `qnli`
    - `premise`, `hypothesis`
  - `qqp`
    - `text_a`, `text_b`
  - `sst`
    - `text`
  - `stsb`
    - `text_a`, `text_b`
  - `wnli`
    - `premise`, `hypothesis`
- SuperGLUE
  - `boolq`
    - `question`, `passage`
  - `cb`
    - `premise`, `hypothesis`
  - `copa`
    - `premise`, `choice1`, `choice2`, `question`
  - `rte`
    - `premise`, `hypothesis`

### Data Splits

In order to have test-split, we repurpose the original validation-split as
test-split, and split the training-split into a new training- and
validation-split, with an 80-20 distribution.

## Dataset Creation

For more information about the individual tasks see (https://gluebenchmark.com) and (https://super.gluebenchmark.com).

### Curation Rationale

Training non-English models is easy, but there is a lack of evaluation datasets to compare their actual performance.

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

Thanks to [@robinqrtz](https://github.com/robinqrtz) for adding this dataset.