albertvillanova HF staff commited on
Commit
5799524
1 Parent(s): 6f98859

Delete legacy JSON metadata (#4)

Browse files

- Delete legacy JSON metadata (7984336b2a06f5a5c5c7f969eb83e87216f14974)

Files changed (1) hide show
  1. dataset_infos.json +0 -1
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "PUBHEALTH is a comprehensive dataset for explainable automated fact-checking of\npublic health claims. Each instance in the PUBHEALTH dataset has an associated\nveracity label (true, false, unproven, mixture). Furthermore each instance in the\ndataset has an explanation text field. The explanation is a justification for which\nthe claim has been assigned a particular veracity label.\n\nThe dataset was created to explore fact-checking of difficult to verify claims i.e.,\nthose which require expertise from outside of the journalistics domain, in this case\nbiomedical and public health expertise.\n\nIt was also created in response to the lack of fact-checking datasets which provide\ngold standard natural language explanations for verdicts/labels.\n\nNOTE: There are missing labels in the dataset and we have replaced them with -1.\n", "citation": "@inproceedings{kotonya-toni-2020-explainable,\n title = \"Explainable Automated Fact-Checking for Public Health Claims\",\n author = \"Kotonya, Neema and Toni, Francesca\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods\n in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.623\",\n pages = \"7740--7754\",\n}\n", "homepage": "https://github.com/neemakot/Health-Fact-Checking/blob/master/data/DATASHEET.md", "license": "", "features": {"claim_id": {"dtype": "string", "id": null, "_type": "Value"}, "claim": {"dtype": "string", "id": null, "_type": "Value"}, "date_published": {"dtype": "string", "id": null, "_type": "Value"}, "explanation": {"dtype": "string", "id": null, "_type": "Value"}, "fact_checkers": {"dtype": "string", "id": null, "_type": "Value"}, "main_text": {"dtype": "string", "id": null, "_type": "Value"}, "sources": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 4, "names": ["false", "mixture", "true", "unproven"], "names_file": null, "id": null, "_type": "ClassLabel"}, "subjects": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "health_fact", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 53985377, "num_examples": 9832, "dataset_name": "health_fact"}, "test": {"name": "test", "num_bytes": 6825221, "num_examples": 1235, "dataset_name": "health_fact"}, "validation": {"name": "validation", "num_bytes": 6653044, "num_examples": 1225, "dataset_name": "health_fact"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1eTtRs5cUlBP5dXsx-FTAlmXuB6JQi2qj": {"num_bytes": 24892660, "checksum": "3f0a5541f4a60c09a138a896621402893ce4b3a37060363d9257010c2c27fc3a"}}, "download_size": 24892660, "post_processing_size": null, "dataset_size": 67463642, "size_in_bytes": 92356302}}