import json import os import datasets _CITATION = """\ @inproceedings{lin-etal-2020-commongen, title = "{C}ommon{G}en: A Constrained Text Generation Challenge for Generative Commonsense Reasoning", author = "Lin, Bill Yuchen and Zhou, Wangchunshu and Shen, Ming and Zhou, Pei and Bhagavatula, Chandra and Choi, Yejin and Ren, Xiang", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165", pages = "1823--1840", } """ _DESCRIPTION = """\ CommonGen is a constrained text generation task, associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning. Given a set of common concepts; the task is to generate a coherent sentence describing an everyday scenario using these concepts. """ _URLs = { "data": "https://storage.googleapis.com/huggingface-nlp/datasets/common_gen/commongen_data.zip", "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/common_gen.zip", } class CommonGen(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DEFAULT_CONFIG_NAME = "common_gen" def _info(self): features = datasets.Features( { "gem_id": datasets.Value("string"), "gem_parent_id": datasets.Value("string"), "concept_set_id": datasets.Value("int32"), "concepts": [datasets.Value("string")], "target": datasets.Value("string"), # single target for train "references": [ datasets.Value("string") ], # multiple references for validation } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=datasets.info.SupervisedKeysData( input="concepts", output="target" ), homepage="https://inklab.usc.edu/CommonGen/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_URLs) challenge_sets = [ ("challenge_train_sample", "train_common_gen_RandomSample500.json"), ( "challenge_validation_sample", "validation_common_gen_RandomSample500.json", ), ( "challenge_test_scramble", "test_common_gen_ScrambleInputStructure500.json", ), ] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(dl_dir["data"], "commongen.train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(dl_dir["data"], "commongen.dev.jsonl"), "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( dl_dir["data"], "commongen.test_noref.jsonl" ), "split": "test", }, ), ] + [ datasets.SplitGenerator( name=challenge_split, gen_kwargs={ "filepath": os.path.join( dl_dir["challenge_set"], "common_gen", filename ), "split": challenge_split, }, ) for challenge_split, filename in challenge_sets ] def _generate_examples(self, filepath, split, filepaths=None, lang=None): """Yields examples.""" if split.startswith("challenge"): exples = json.load(open(filepath, encoding="utf-8")) if isinstance(exples, dict): assert len(exples) == 1, "multiple entries found" exples = list(exples.values())[0] for id_, exple in enumerate(exples): if len(exple) == 0: continue exple["gem_parent_id"] = exple["gem_id"] exple["gem_id"] = f"common_gen-{split}-{id_}" yield id_, exple else: with open(filepath, encoding="utf-8") as f: id_ = -1 i = -1 for row in f: row = row.replace(", }", "}") # Fix possible JSON format error data = json.loads(row) concepts = [word for word in data["concept_set"].split("#")] if split == "train": i += 1 for scene in data["scene"]: id_ += 1 yield id_, { "gem_id": f"common_gen-{split}-{id_}", "gem_parent_id": f"common_gen-{split}-{id_}", "concept_set_id": i, "concepts": concepts, "target": scene, "references": [], } else: id_ += 1 yield id_, { "gem_id": f"common_gen-{split}-{id_}", "gem_parent_id": f"common_gen-{split}-{id_}", "concept_set_id": id_, "concepts": concepts, "target": "" if split == "test" else data["scene"][0], "references": [] if split == "test" else data["scene"], }