|
import json |
|
import os |
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{lin-etal-2020-commongen, |
|
title = "{C}ommon{G}en: A Constrained Text Generation Challenge for Generative Commonsense Reasoning", |
|
author = "Lin, Bill Yuchen and |
|
Zhou, Wangchunshu and |
|
Shen, Ming and |
|
Zhou, Pei and |
|
Bhagavatula, Chandra and |
|
Choi, Yejin and |
|
Ren, Xiang", |
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", |
|
month = nov, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165", |
|
pages = "1823--1840", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CommonGen is a constrained text generation task, associated with a benchmark |
|
dataset, to explicitly test machines for the ability of generative commonsense |
|
reasoning. Given a set of common concepts; the task is to generate a coherent |
|
sentence describing an everyday scenario using these concepts. |
|
""" |
|
|
|
_URLs = { |
|
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/common_gen/commongen_data.zip", |
|
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/common_gen.zip", |
|
} |
|
|
|
|
|
class CommonGen(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
DEFAULT_CONFIG_NAME = "common_gen" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"gem_id": datasets.Value("string"), |
|
"gem_parent_id": datasets.Value("string"), |
|
"concept_set_id": datasets.Value("int32"), |
|
"concepts": [datasets.Value("string")], |
|
"target": datasets.Value("string"), |
|
"references": [ |
|
datasets.Value("string") |
|
], |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=datasets.info.SupervisedKeysData( |
|
input="concepts", output="target" |
|
), |
|
homepage="https://inklab.usc.edu/CommonGen/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_URLs) |
|
challenge_sets = [ |
|
("challenge_train_sample", "train_common_gen_RandomSample500.json"), |
|
( |
|
"challenge_validation_sample", |
|
"validation_common_gen_RandomSample500.json", |
|
), |
|
( |
|
"challenge_test_scramble", |
|
"test_common_gen_ScrambleInputStructure500.json", |
|
), |
|
] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_dir["data"], "commongen.train.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_dir["data"], "commongen.dev.jsonl"), |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
dl_dir["data"], "commongen.test_noref.jsonl" |
|
), |
|
"split": "test", |
|
}, |
|
), |
|
] + [ |
|
datasets.SplitGenerator( |
|
name=challenge_split, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
dl_dir["challenge_set"], "common_gen", filename |
|
), |
|
"split": challenge_split, |
|
}, |
|
) |
|
for challenge_split, filename in challenge_sets |
|
] |
|
|
|
def _generate_examples(self, filepath, split, filepaths=None, lang=None): |
|
"""Yields examples.""" |
|
if split.startswith("challenge"): |
|
exples = json.load(open(filepath, encoding="utf-8")) |
|
if isinstance(exples, dict): |
|
assert len(exples) == 1, "multiple entries found" |
|
exples = list(exples.values())[0] |
|
for id_, exple in enumerate(exples): |
|
if len(exple) == 0: |
|
continue |
|
exple["gem_parent_id"] = exple["gem_id"] |
|
exple["gem_id"] = f"common_gen-{split}-{id_}" |
|
yield id_, exple |
|
else: |
|
with open(filepath, encoding="utf-8") as f: |
|
id_ = -1 |
|
i = -1 |
|
for row in f: |
|
row = row.replace(", }", "}") |
|
data = json.loads(row) |
|
concepts = [word for word in data["concept_set"].split("#")] |
|
if split == "train": |
|
i += 1 |
|
for scene in data["scene"]: |
|
id_ += 1 |
|
yield id_, { |
|
"gem_id": f"common_gen-{split}-{id_}", |
|
"gem_parent_id": f"common_gen-{split}-{id_}", |
|
"concept_set_id": i, |
|
"concepts": concepts, |
|
"target": scene, |
|
"references": [], |
|
} |
|
else: |
|
id_ += 1 |
|
yield id_, { |
|
"gem_id": f"common_gen-{split}-{id_}", |
|
"gem_parent_id": f"common_gen-{split}-{id_}", |
|
"concept_set_id": id_, |
|
"concepts": concepts, |
|
"target": "" if split == "test" else data["scene"][0], |
|
"references": [] if split == "test" else data["scene"], |
|
} |
|
|