# Copyright 2022 Fazzie # MIT License """Loading script for Teyvat.""" import re import numpy as np import pandas as pd from json import load, dump from os.path import join, basename from huggingface_hub import hf_hub_url import datasets # You can copy an official description _DESCRIPTION = """ Teyvat is the first small-scale text-to-image prompt dataset for Genshin impact. """ _LICENSE = "CC0 1.0" _VERSION = datasets.Version("0.0.1") # Programmatically generate the URLs for different parts # hf_hub_url() provides a more flexible way to resolve the file URLs # https://huggingface.co./datasets/Fazzie/Teyvat/ _URLS = {"data" :hf_hub_url( repo_id = "Fazzie/Teyvat", filename = "data.zip", repo_type = "dataset", ), "metadata" :hf_hub_url( repo_id = "Fazzie/Teyvat", filename = "metadata.json", repo_type = "dataset", ) } class Teyvat(datasets.GeneratorBasedBuilder): """Teyvat is the first small-scale text-to-image prompt dataset for Genshin impact""" def _info(self): """Specify the information of Teyvat.""" features = datasets.Features( { "image": datasets.Image(), "text": datasets.Value("string"), }, ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, license=_LICENSE, version=_VERSION ) def _split_generators(self, dl_manager): # If several configurations are possible (listed in BUILDER_CONFIGS), # the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLS It can accept any type or nested list/dict # and will give back the same structure with the url replaced with path # to local files. By default the archives will be extracted and a path # to a cached folder where they are extracted is returned instead of the # archive # Resolve the urls urls = _URLS # Also download the data data_path = dl_manager.download_and_extract(urls["data"]) meta_data_path = dl_manager.download(urls["metadata"]) # data = load(open(meta_data_path, "r", encoding="utf8")) # for image in data: # image_path = "data/" + image["file_name"] # image_path = hf_hub_url( # "datasets/Fazzie/Teyvat", # filename=image_path, # ), # dl_manager.download(image_path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "data_path": data_path, "meta_data_path": meta_data_path }, ), ] def _generate_examples(self, data_path, meta_data_path): # This method handles input defined in _split_generators to yield # (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, # but must be unique for each example. # Load the metadata parquet file if the config is text_only print("Loading metadata...", meta_data_path) data = load(open(meta_data_path, "r", encoding="utf8")) for image in data: image_path = join(data_path, "data", image["file_name"]) text = image["text"] yield image_path, { "image": { "path": image_path, "bytes": open(image_path, "rb").read(), }, "text": text, }