File size: 12,308 Bytes
fe4afad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from zipfile import ZipFile, ZIP_DEFLATED
import json
import os
import copy
import zipfile
from tqdm import tqdm
import re
from collections import Counter
from shutil import rmtree
from convlab.util.file_util import read_zipped_json, write_zipped_json
from pprint import pprint
import random
import glob
descriptions = {
'movie': 'Book movie tickets for the user',
'name.movie': 'Name of the movie, e.g. Joker, Parasite, The Avengers',
'name.theater': 'Name of the theater, e.g. Century City, AMC Mercado 20',
'num.tickets': 'Number of tickets, e.g. two, me and my friend, John and I',
'time.preference': 'Preferred time or range, e.g. around 2pm, later in the evening, 4:30pm',
'time.showing': 'The showtimes published by the theater, e.g. 5:10pm, 8:30pm',
'date.showing': 'the date or day of the showing, e.g. today, tonight, tomrrow, April 12th.',
'location': 'The city, or city and state, zip code and sometimes more specific regions, e.g. downtown',
'type.screening': 'IMAX, Dolby, 3D, standard, or similar phrases for technology offerings',
'seating': 'Various phrases from specific "row 1" to "near the back", "on an aisle", etc.',
'date.release': 'Movie attribute published for the official movie release date.',
'price.ticket': 'Price per ticket',
'price.total': 'The total for the purchase of all tickets',
'name.genre': 'Includes a wide range from classic genres like action, drama, etc. to categories like "slasher" or series like Marvel or Harry Potter',
'description.plot': 'The movie synopsis or shorter description',
'description.other': 'Any other movie description that is not captured by genre, name, plot.',
'duration.movie': 'The movie runtime, e.g. 120 minutes',
'name.person': 'Names of actors, directors, producers but NOT movie characters',
'name.character': 'Character names like James Bond, Harry Potter, Wonder Woman',
'review.audience': 'The audience review',
'review.critic': 'Critic reviews like those from Rotten Tomatoes, IMDB, etc.',
'rating.movie': 'G, PG, PG-13, R, etc.',
}
anno2slot = {
"movie": {
"description.other": False, # transform to binary dialog act
"description.plot": False, # too long, 19 words in avg. transform to binary dialog act
}
}
def format_turns(ori_turns):
# delete invalid turns and merge continuous turns
new_turns = []
previous_speaker = None
utt_idx = 0
for i, turn in enumerate(ori_turns):
speaker = 'system' if turn['speaker'].upper() == 'ASSISTANT' else 'user'
turn['speaker'] = speaker
if turn['text'] == '(deleted)':
continue
if not previous_speaker:
# first turn
assert speaker != previous_speaker
if speaker != previous_speaker:
# switch speaker
previous_speaker = speaker
new_turns.append(copy.deepcopy(turn))
utt_idx += 1
else:
# continuous speaking of the same speaker
last_turn = new_turns[-1]
# skip repeated turn
if turn['text'] in ori_turns[i-1]['text']:
continue
# merge continuous turns
index_shift = len(last_turn['text']) + 1
last_turn['text'] += ' '+turn['text']
if 'segments' in turn:
last_turn.setdefault('segments', [])
for segment in turn['segments']:
segment['start_index'] += index_shift
segment['end_index'] += index_shift
last_turn['segments'] += turn['segments']
return new_turns
def preprocess():
original_data_dir = 'Taskmaster-master'
new_data_dir = 'data'
if not os.path.exists(original_data_dir):
original_data_zip = 'master.zip'
if not os.path.exists(original_data_zip):
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm3/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip')
else:
archive = ZipFile(original_data_zip)
archive.extractall()
os.makedirs(new_data_dir, exist_ok=True)
ontology = {'domains': {},
'intents': {
'inform': {'description': 'inform the value of a slot or general information.'}
},
'state': {},
'dialogue_acts': {
"categorical": {},
"non-categorical": {},
"binary": {}
}}
global descriptions
global anno2slot
ori_ontology = json.load(open(os.path.join(original_data_dir, "TM-3-2020/ontology/entities.json")))
assert len(ori_ontology) == 1
domain = list(ori_ontology.keys())[0]
domain_ontology = ori_ontology[domain]
ontology['domains'][domain] = {'description': descriptions[domain], 'slots': {}}
ontology['state'][domain] = {}
for slot in domain_ontology['required']+domain_ontology['optional']:
ontology['domains'][domain]['slots'][slot] = {
'description': descriptions[slot],
'is_categorical': False,
'possible_values': [],
}
if slot not in anno2slot[domain]:
ontology['state'][domain][slot] = ''
dataset = 'tm3'
splits = ['train', 'validation', 'test']
dialogues_by_split = {split:[] for split in splits}
data_files = sorted(glob.glob(os.path.join(original_data_dir, f"TM-3-2020/data/*.json")))
for data_file in tqdm(data_files, desc='processing taskmaster-{}'.format(domain)):
data = json.load(open(data_file))
# random split, train:validation:test = 8:1:1
random.seed(42)
dial_ids = list(range(len(data)))
random.shuffle(dial_ids)
dial_id2split = {}
for dial_id in dial_ids[:int(0.8*len(dial_ids))]:
dial_id2split[dial_id] = 'train'
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]:
dial_id2split[dial_id] = 'validation'
for dial_id in dial_ids[int(0.9*len(dial_ids)):]:
dial_id2split[dial_id] = 'test'
for dial_id, d in enumerate(data):
# delete empty dialogs and invalid dialogs
if len(d['utterances']) == 0:
continue
if len(set([t['speaker'] for t in d['utterances']])) == 1:
continue
data_split = dial_id2split[dial_id]
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
cur_domains = [domain]
goal = {
'description': d['instructions'],
'inform': {},
'request': {}
}
dialogue = {
'dataset': dataset,
'data_split': data_split,
'dialogue_id': dialogue_id,
'original_id': d["conversation_id"],
'domains': cur_domains,
'goal': goal,
'turns': []
}
turns = format_turns(d['utterances'])
prev_state = {}
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain]))
for utt_idx, uttr in enumerate(turns):
speaker = uttr['speaker']
turn = {
'speaker': speaker,
'utterance': uttr['text'],
'utt_idx': utt_idx,
'dialogue_acts': {
'binary': [],
'categorical': [],
'non-categorical': [],
},
}
in_span = [0] * len(turn['utterance'])
if 'segments' in uttr:
# sort the span according to the length
segments = sorted(uttr['segments'], key=lambda x: len(x['text']))
for segment in segments:
assert len(['annotations']) == 1
item = segment['annotations'][0]
intent = 'inform' # default intent
slot = item['name'].strip()
assert slot in ontology['domains'][domain]['slots']
if slot in anno2slot[domain]:
# binary dialog act
turn['dialogue_acts']['binary'].append({
'intent': intent,
'domain': domain,
'slot': slot,
})
continue
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text']
# skip overlapped spans, keep the shortest one
if sum(in_span[segment['start_index']: segment['end_index']]) > 0:
continue
else:
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index'])
turn['dialogue_acts']['non-categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': segment['text'],
'start': segment['start_index'],
'end': segment['end_index']
})
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start'])
bdas = set()
for da in turn['dialogue_acts']['binary']:
da_tuple = (da['intent'], da['domain'], da['slot'],)
bdas.add(da_tuple)
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)]
# add to dialogue_acts dictionary in the ontology
for da_type in turn['dialogue_acts']:
das = turn['dialogue_acts'][da_type]
for da in das:
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
for da in turn['dialogue_acts']['non-categorical']:
slot, value = da['slot'], da['value']
assert slot in prev_state[domain], print(da)
prev_state[domain][slot] = value
if speaker == 'user':
turn['state'] = copy.deepcopy(prev_state)
else:
turn['db_results'] = {}
if 'apis' in turns[utt_idx-1]:
turn['db_results'].setdefault(domain, [])
apis = turns[utt_idx-1]['apis']
turn['db_results'][domain] += apis
dialogue['turns'].append(turn)
dialogues_by_split[data_split].append(dialogue)
for da_type in ontology['dialogue_acts']:
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
for filename in os.listdir(new_data_dir):
zf.write(f'{new_data_dir}/{filename}')
rmtree(original_data_dir)
rmtree(new_data_dir)
return dialogues, ontology
if __name__ == '__main__':
preprocess()
|