Datasets:

Languages:
English
License:
trec / trec.py
albertvillanova's picture
Fix fine classes in trec dataset (#4801)
1f97567
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Text REtrieval Conference (TREC) Question Classification dataset."""
import datasets
_DESCRIPTION = """\
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700.
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled.
"""
_HOMEPAGE = "https://cogcomp.seas.upenn.edu/Data/QA/QC/"
_CITATION = """\
@inproceedings{li-roth-2002-learning,
title = "Learning Question Classifiers",
author = "Li, Xin and
Roth, Dan",
booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics",
year = "2002",
url = "https://www.aclweb.org/anthology/C02-1150",
}
@inproceedings{hovy-etal-2001-toward,
title = "Toward Semantics-Based Answer Pinpointing",
author = "Hovy, Eduard and
Gerber, Laurie and
Hermjakob, Ulf and
Lin, Chin-Yew and
Ravichandran, Deepak",
booktitle = "Proceedings of the First International Conference on Human Language Technology Research",
year = "2001",
url = "https://www.aclweb.org/anthology/H01-1069",
}
"""
_URLs = {
"train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label",
"test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label",
}
_COARSE_LABELS = ["ABBR", "ENTY", "DESC", "HUM", "LOC", "NUM"]
_FINE_LABELS = [
"ABBR:abb",
"ABBR:exp",
"ENTY:animal",
"ENTY:body",
"ENTY:color",
"ENTY:cremat",
"ENTY:currency",
"ENTY:dismed",
"ENTY:event",
"ENTY:food",
"ENTY:instru",
"ENTY:lang",
"ENTY:letter",
"ENTY:other",
"ENTY:plant",
"ENTY:product",
"ENTY:religion",
"ENTY:sport",
"ENTY:substance",
"ENTY:symbol",
"ENTY:techmeth",
"ENTY:termeq",
"ENTY:veh",
"ENTY:word",
"DESC:def",
"DESC:desc",
"DESC:manner",
"DESC:reason",
"HUM:gr",
"HUM:ind",
"HUM:title",
"HUM:desc",
"LOC:city",
"LOC:country",
"LOC:mount",
"LOC:other",
"LOC:state",
"NUM:code",
"NUM:count",
"NUM:date",
"NUM:dist",
"NUM:money",
"NUM:ord",
"NUM:other",
"NUM:period",
"NUM:perc",
"NUM:speed",
"NUM:temp",
"NUM:volsize",
"NUM:weight",
]
class Trec(datasets.GeneratorBasedBuilder):
"""The Text REtrieval Conference (TREC) Question Classification dataset."""
VERSION = datasets.Version("2.0.0", description="Fine label contains 50 classes instead of 47.")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"coarse_label": datasets.ClassLabel(names=_COARSE_LABELS),
"fine_label": datasets.ClassLabel(names=_FINE_LABELS),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_files = dl_manager.download(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": dl_files["test"],
},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, "rb") as f:
for id_, row in enumerate(f):
# One non-ASCII byte: sisterBADBYTEcity. We replace it with a space
fine_label, _, text = row.replace(b"\xf0", b" ").strip().decode().partition(" ")
coarse_label = fine_label.split(":")[0]
yield id_, {
"text": text,
"coarse_label": coarse_label,
"fine_label": fine_label,
}