import time import os from datasets import load_dataset import pickle # Define a helper function to load datasets with retry mechanism def load_dataset_with_retries(dataset_name, *args, retries=3, wait=5, **kwargs): for attempt in range(retries): try: return load_dataset(dataset_name, *args, **kwargs) except Exception as e: print(f"Attempt {attempt + 1} failed for {dataset_name}. Error: {e}") if attempt < retries - 1: time.sleep(wait) else: raise # Checkpoint file to save progress checkpoint_file = 'tunisian_data_checkpoint.txt' dataset_count_path = 'data_count.pkl' # Load progress if checkpoint exists if os.path.exists(checkpoint_file): with open(checkpoint_file, 'r') as f: final_data = eval(f.read()) else: final_data = [] if os.path.exists(dataset_count_path): # Loading the variable back with open(dataset_count_path, 'rb') as f: loaded_data = pickle.load(f) datasets_completed = loaded_data['datasets_completed'] else: datasets_completed = 0 # Helper function to save progress to a checkpoint file def save_checkpoint(data): with open(checkpoint_file, 'w') as f: f.write(str(data)) def save_datasets_completed(num): # Saving the variable to a file with open(dataset_count_path, 'wb') as f: pickle.dump({'datasets_completed': num}, f) # Load and process datasets try: if datasets_completed < 1: ds_xp3x = load_dataset_with_retries("Muennighoff/xP3x", "aeb_Arab", trust_remote_code=True) final_data.extend(list(sentence['targets'] for sentence in ds_xp3x['train'])) save_checkpoint(final_data) datasets_completed += 1 if datasets_completed < 2: ds_glotcc = load_dataset_with_retries("cis-lmu/glotcc-v1", name="aeb-Arab", split="train") final_data.extend(list(sentence['content'] for sentence in ds_glotcc)) save_checkpoint(final_data) datasets_completed += 1 if datasets_completed < 3: ds_flores = load_dataset_with_retries('facebook/flores', 'aeb_Arab') final_data.extend(list(sentence['sentence'] for sentence in ds_flores['dev'])) final_data.extend(list(sentence['sentence'] for sentence in ds_flores['devtest'])) save_checkpoint(final_data) datasets_completed += 1 if datasets_completed < 4: ds_glotstory = load_dataset_with_retries('cis-lmu/GlotStoryBook', 'default', split='train') glotstory_sentences = [sentence for sentence in ds_glotstory if sentence["Language"] == 'aeb'] final_data.extend(glotstory_sentences) save_checkpoint(final_data) datasets_completed += 1 if datasets_completed < 5: ds_sib200 = load_dataset_with_retries('Davlan/sib200', 'aeb_Arab') final_data.extend(list(sentence['text'] for sentence in ds_sib200['train'])) final_data.extend(list(sentence['text'] for sentence in ds_sib200['validation'])) final_data.extend(list(sentence['text'] for sentence in ds_sib200['test'])) save_checkpoint(final_data) datasets_completed += 1 if datasets_completed < 6: ds_xsimplus = load_dataset_with_retries("jaygala24/xsimplusplus", "aeb_Arab") final_data.extend(list(sentence['query'] for sentence in ds_xsimplus['dev'])) final_data.extend(list(sentence['query'] for sentence in ds_xsimplus['devtest'])) save_checkpoint(final_data) datasets_completed += 1 if datasets_completed < 7: ds_gentai = load_dataset_with_retries("gentaiscool/bitext_sib200_miners", "eng_Latn-aeb_Arab") final_data.extend(list(sentence['sentence2'] for sentence in ds_gentai['train'])) save_checkpoint(final_data) datasets_completed += 1 if datasets_completed < 8: dataset_reddit = load_dataset_with_retries('dataverse-scraping/reddit_dataset_219', split='train', streaming=True) def filter_function(example): return example['communityName'] == 'r/Tunisia' # Replace with your filter condition filtered_dataset = dataset_reddit.filter(filter_function) final_data.extend(list(sentence['text'] for sentence in filtered_dataset)) save_checkpoint(final_data) datasets_completed += 1 # Final save to a text file with open('tunisian_data.txt', 'w') as f: for line in final_data: f.write(f"{line}\n") except Exception as e: print(f"An error occurred: {e}. Progress saved.") save_checkpoint(final_data)