Datasets:
azayz
commited on
Commit
•
4ce09e7
1
Parent(s):
0e0ef7b
add scripts to reproduce
Browse files- create_data.py +122 -0
- preprocess.py +103 -0
create_data.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
from datasets import load_dataset
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
|
7 |
+
# Define a helper function to load datasets with retry mechanism
|
8 |
+
def load_dataset_with_retries(dataset_name, *args, retries=3, wait=5, **kwargs):
|
9 |
+
for attempt in range(retries):
|
10 |
+
try:
|
11 |
+
return load_dataset(dataset_name, *args, **kwargs)
|
12 |
+
except Exception as e:
|
13 |
+
print(f"Attempt {attempt + 1} failed for {dataset_name}. Error: {e}")
|
14 |
+
if attempt < retries - 1:
|
15 |
+
time.sleep(wait)
|
16 |
+
else:
|
17 |
+
raise
|
18 |
+
|
19 |
+
|
20 |
+
# Checkpoint file to save progress
|
21 |
+
checkpoint_file = 'tunisian_data_checkpoint.txt'
|
22 |
+
dataset_count_path = 'data_count.pkl'
|
23 |
+
|
24 |
+
# Load progress if checkpoint exists
|
25 |
+
if os.path.exists(checkpoint_file):
|
26 |
+
with open(checkpoint_file, 'r') as f:
|
27 |
+
final_data = eval(f.read())
|
28 |
+
else:
|
29 |
+
final_data = []
|
30 |
+
|
31 |
+
if os.path.exists(dataset_count_path):
|
32 |
+
# Loading the variable back
|
33 |
+
with open(dataset_count_path, 'rb') as f:
|
34 |
+
loaded_data = pickle.load(f)
|
35 |
+
datasets_completed = loaded_data['datasets_completed']
|
36 |
+
else:
|
37 |
+
datasets_completed = 0
|
38 |
+
|
39 |
+
|
40 |
+
# Helper function to save progress to a checkpoint file
|
41 |
+
def save_checkpoint(data):
|
42 |
+
with open(checkpoint_file, 'w') as f:
|
43 |
+
f.write(str(data))
|
44 |
+
|
45 |
+
|
46 |
+
def save_datasets_completed(num):
|
47 |
+
# Saving the variable to a file
|
48 |
+
with open(dataset_count_path, 'wb') as f:
|
49 |
+
pickle.dump({'datasets_completed': num}, f)
|
50 |
+
|
51 |
+
|
52 |
+
# Load and process datasets
|
53 |
+
try:
|
54 |
+
if datasets_completed < 1:
|
55 |
+
ds_xp3x = load_dataset_with_retries("Muennighoff/xP3x", "aeb_Arab", trust_remote_code=True)
|
56 |
+
final_data.extend(list(sentence['targets'] for sentence in ds_xp3x['train']))
|
57 |
+
save_checkpoint(final_data)
|
58 |
+
datasets_completed += 1
|
59 |
+
|
60 |
+
if datasets_completed < 2:
|
61 |
+
ds_glotcc = load_dataset_with_retries("cis-lmu/glotcc-v1", name="aeb-Arab", split="train")
|
62 |
+
final_data.extend(list(sentence['content'] for sentence in ds_glotcc))
|
63 |
+
save_checkpoint(final_data)
|
64 |
+
datasets_completed += 1
|
65 |
+
|
66 |
+
if datasets_completed < 3:
|
67 |
+
ds_flores = load_dataset_with_retries('facebook/flores', 'aeb_Arab')
|
68 |
+
final_data.extend(list(sentence['sentence'] for sentence in ds_flores['dev']))
|
69 |
+
final_data.extend(list(sentence['sentence'] for sentence in ds_flores['devtest']))
|
70 |
+
save_checkpoint(final_data)
|
71 |
+
datasets_completed += 1
|
72 |
+
|
73 |
+
if datasets_completed < 4:
|
74 |
+
ds_glotstory = load_dataset_with_retries('cis-lmu/GlotStoryBook', 'default', split='train')
|
75 |
+
glotstory_sentences = [sentence for sentence in ds_glotstory if sentence["Language"] == 'aeb']
|
76 |
+
final_data.extend(glotstory_sentences)
|
77 |
+
save_checkpoint(final_data)
|
78 |
+
datasets_completed += 1
|
79 |
+
|
80 |
+
if datasets_completed < 5:
|
81 |
+
ds_sib200 = load_dataset_with_retries('Davlan/sib200', 'aeb_Arab')
|
82 |
+
final_data.extend(list(sentence['text'] for sentence in ds_sib200['train']))
|
83 |
+
final_data.extend(list(sentence['text'] for sentence in ds_sib200['validation']))
|
84 |
+
final_data.extend(list(sentence['text'] for sentence in ds_sib200['test']))
|
85 |
+
save_checkpoint(final_data)
|
86 |
+
datasets_completed += 1
|
87 |
+
|
88 |
+
if datasets_completed < 6:
|
89 |
+
ds_xsimplus = load_dataset_with_retries("jaygala24/xsimplusplus", "aeb_Arab")
|
90 |
+
final_data.extend(list(sentence['query'] for sentence in ds_xsimplus['dev']))
|
91 |
+
final_data.extend(list(sentence['query'] for sentence in ds_xsimplus['devtest']))
|
92 |
+
save_checkpoint(final_data)
|
93 |
+
datasets_completed += 1
|
94 |
+
|
95 |
+
if datasets_completed < 7:
|
96 |
+
ds_gentai = load_dataset_with_retries("gentaiscool/bitext_sib200_miners", "eng_Latn-aeb_Arab")
|
97 |
+
final_data.extend(list(sentence['sentence2'] for sentence in ds_gentai['train']))
|
98 |
+
save_checkpoint(final_data)
|
99 |
+
datasets_completed += 1
|
100 |
+
|
101 |
+
if datasets_completed < 8:
|
102 |
+
dataset_reddit = load_dataset_with_retries('dataverse-scraping/reddit_dataset_219', split='train',
|
103 |
+
streaming=True)
|
104 |
+
|
105 |
+
|
106 |
+
def filter_function(example):
|
107 |
+
return example['communityName'] == 'r/Tunisia' # Replace with your filter condition
|
108 |
+
|
109 |
+
|
110 |
+
filtered_dataset = dataset_reddit.filter(filter_function)
|
111 |
+
final_data.extend(list(sentence['text'] for sentence in filtered_dataset))
|
112 |
+
save_checkpoint(final_data)
|
113 |
+
datasets_completed += 1
|
114 |
+
|
115 |
+
# Final save to a text file
|
116 |
+
with open('tunisian_data.txt', 'w') as f:
|
117 |
+
for line in final_data:
|
118 |
+
f.write(f"{line}\n")
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
print(f"An error occurred: {e}. Progress saved.")
|
122 |
+
save_checkpoint(final_data)
|
preprocess.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from collections import Counter
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from datasketch import MinHash, MinHashLSH
|
6 |
+
from lingua import Language, LanguageDetectorBuilder
|
7 |
+
|
8 |
+
# Initialize variables for statistics
|
9 |
+
word_count = Counter()
|
10 |
+
longest_sentence = ""
|
11 |
+
shortest_sentence = None
|
12 |
+
total_sentences = 0
|
13 |
+
all_sentences = []
|
14 |
+
|
15 |
+
|
16 |
+
def tokenize(text):
|
17 |
+
"""
|
18 |
+
Clean and split text into words.
|
19 |
+
"""
|
20 |
+
# Remove punctuation and split by whitespace
|
21 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
22 |
+
return words
|
23 |
+
|
24 |
+
|
25 |
+
# Open the file and process line by line
|
26 |
+
with open('tunisian_data.txt', 'r') as file:
|
27 |
+
for line in file:
|
28 |
+
# Strip leading/trailing whitespace
|
29 |
+
line = line.strip()
|
30 |
+
|
31 |
+
# Skip empty lines
|
32 |
+
if not line:
|
33 |
+
continue
|
34 |
+
|
35 |
+
# Split the line into sentences (using '.', '!', or '?' as delimiters)
|
36 |
+
sentences = re.split(r'[.!?]', line)
|
37 |
+
|
38 |
+
for sentence in sentences:
|
39 |
+
sentence = sentence.strip()
|
40 |
+
if sentence:
|
41 |
+
all_sentences.append(sentence)
|
42 |
+
total_sentences += 1
|
43 |
+
|
44 |
+
# Update longest and shortest sentences
|
45 |
+
if len(sentence) > len(longest_sentence):
|
46 |
+
longest_sentence = sentence
|
47 |
+
if shortest_sentence is None or len(sentence) < len(shortest_sentence):
|
48 |
+
shortest_sentence = sentence
|
49 |
+
|
50 |
+
# Tokenize and count words
|
51 |
+
words = tokenize(sentence)
|
52 |
+
word_count.update(words)
|
53 |
+
|
54 |
+
# Get the most common words
|
55 |
+
most_common_words = word_count.most_common(10)
|
56 |
+
print(f"Most Common Words: {most_common_words}")
|
57 |
+
|
58 |
+
|
59 |
+
def get_minhash(text, num_perm=128):
|
60 |
+
"""
|
61 |
+
Generate a MinHash for a given text.
|
62 |
+
"""
|
63 |
+
tokens = set(text.split())
|
64 |
+
m = MinHash(num_perm=num_perm)
|
65 |
+
for token in tokens:
|
66 |
+
m.update(token.encode('utf8'))
|
67 |
+
return m
|
68 |
+
|
69 |
+
|
70 |
+
def minhash_deduplication(docs, threshold=0.8, num_perm=128):
|
71 |
+
"""
|
72 |
+
Remove near-duplicate documents using MinHash LSH.
|
73 |
+
"""
|
74 |
+
lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)
|
75 |
+
unique_docs = []
|
76 |
+
|
77 |
+
for i, doc in enumerate(docs):
|
78 |
+
m = get_minhash(doc, num_perm=num_perm)
|
79 |
+
if not lsh.query(m): # Check if the document is a near duplicate
|
80 |
+
lsh.insert(i, m)
|
81 |
+
unique_docs.append(doc)
|
82 |
+
|
83 |
+
return unique_docs
|
84 |
+
|
85 |
+
|
86 |
+
unique_docs = minhash_deduplication(all_sentences, threshold=0.8)
|
87 |
+
print(f"Number of unique documents: {len(unique_docs)}")
|
88 |
+
|
89 |
+
# Language detection
|
90 |
+
detector = LanguageDetectorBuilder.from_languages(*Language.all()).build()
|
91 |
+
labels = []
|
92 |
+
cleaned_text = []
|
93 |
+
|
94 |
+
for s in unique_docs:
|
95 |
+
l = detector.detect_language_of(s)
|
96 |
+
if not l:
|
97 |
+
print(f"Could not detect language for sentence: {s}")
|
98 |
+
else:
|
99 |
+
labels.append(l.name)
|
100 |
+
cleaned_text.append(s)
|
101 |
+
|
102 |
+
# Create a DataFrame with the cleaned text
|
103 |
+
df = pd.DataFrame({'text': cleaned_text})
|