daspartho commited on
Commit
d7e55ae
·
1 Parent(s): 1102b4f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 253.51 +/- 24.54
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.69 +/- 17.03
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11b1661e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11b1661ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11b1661f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11b1666040>", "_build": "<function ActorCriticPolicy._build at 0x7f11b16660d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f11b1666160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11b16661f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f11b1666280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11b1666310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11b16663a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11b1666430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f11b1660420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670482286800610669, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDGDz1I/Yy6EMBuuzuEHTi7yhS7TVmDtgAAgD8AAIA/MzlMPY8qWLoXRrQ67zBdNdTI7Dra3tK5AACAPwAAgD9NjQC99ugmuJ5GkTkEfxE06uJhO0fWrLgAAIA/AACAP5rJ97tI25C6OkU7u0RsJbWU09G5cPVYOgAAgD8AAIA/ZjN8PVJwvrnY2ds6dFQ+Nvn1ijp27gG6AACAPwAAgD8AW2Y9dtgYPz2SEr5aMI++GHgyvX4Sib0AAAAAAAAAADMLbbx7SJG61oHnOka+rjUkKOw6fNgFugAAgD8AAIA/ZoqkPI9OKLrqWuO62pLztWka3rpMIgc6AACAPwAAgD8zvOG8R8ACPspGHT7VYAS+UJDXPVLP17sAAAAAAAAAAJ46l74mElc/CYoxvdw5m76MkkK+ouW2PQAAAAAAAAAAM7LTPEhZkbpmbxe7EXbWtAFSKbu/pi46AACAPwAAgD+GaQi+irduPmZrXj19bWO+3esevTdvHLsAAAAAAAAAAGauOrx73oW6enInua1yCLRG1F25zd1COAAAgD8AAIA/xrwjPk9pR7wbaks6ZLdRuB2kpr2waoG5AACAPwAAgD+aT489hXO2uSZxULm5xa+0fKZGO/PGdjgAAIA/AACAP2YmcjoxKOo+PsGHvax1l75FF7e8hkfUugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfCx96ALgYUCUhpRSlIwBbJRN6AOMAXSUR0CRlJeLehwmdX2UKGgGaAloD0MIOllqvd/XYUCUhpRSlGgVTegDaBZHQJGVk6/7BO51fZQoaAZoCWgPQwh5sTBETvtjQJSGlFKUaBVN6ANoFkdAkaIsa86FNHV9lChoBmgJaA9DCLWlDvL6WGNAlIaUUpRoFU3oA2gWR0CRpfrnkkrxdX2UKGgGaAloD0MIu3uA7ssIY0CUhpRSlGgVTegDaBZHQJGsJun/DLt1fZQoaAZoCWgPQwivlGWIY59mQJSGlFKUaBVN6ANoFkdAkbDdELH+63V9lChoBmgJaA9DCAYsuYpFpGBAlIaUUpRoFU3oA2gWR0CRsRI1+AmRdX2UKGgGaAloD0MIMjz2s1jKZUCUhpRSlGgVTegDaBZHQJGxPBqKxcF1fZQoaAZoCWgPQwimttRB3oRlQJSGlFKUaBVN6ANoFkdAkbOP4EfT1HV9lChoBmgJaA9DCPlOzHqx6GVAlIaUUpRoFU3oA2gWR0CRs/lXzUZvdX2UKGgGaAloD0MIwcQfRZ1oYkCUhpRSlGgVTegDaBZHQJG15jqfOD91fZQoaAZoCWgPQwhoXg67b59jQJSGlFKUaBVN6ANoFkdAkbqvt+kP+XV9lChoBmgJaA9DCAkVHF4QB19AlIaUUpRoFU3oA2gWR0CRvj+Vkc0cdX2UKGgGaAloD0MIoPoHkQyJM0CUhpRSlGgVS9RoFkdAkcaQ+UyHmHV9lChoBmgJaA9DCA/R6A5i2WBAlIaUUpRoFU3oA2gWR0CRzDxyXD3udX2UKGgGaAloD0MIDtyBOuWjX0CUhpRSlGgVTegDaBZHQJHNcjkdWAB1fZQoaAZoCWgPQwhW9IdmnrRhQJSGlFKUaBVN6ANoFkdAkeR+ZXuE3HV9lChoBmgJaA9DCDHvcaaJf2ZAlIaUUpRoFU3oA2gWR0CR5RBzV+ZxdX2UKGgGaAloD0MIv4BeuHMFXkCUhpRSlGgVTegDaBZHQJHl+8rZrYZ1fZQoaAZoCWgPQwisx32rdVNjQJSGlFKUaBVN6ANoFkdAkfG5WmxdIHV9lChoBmgJaA9DCI/HDFRGtWFAlIaUUpRoFU3oA2gWR0CR9aA3DNyHdX2UKGgGaAloD0MIoDaq04HmZECUhpRSlGgVTegDaBZHQJH7/M+u/1x1fZQoaAZoCWgPQwj8Uj9vqthjQJSGlFKUaBVN6ANoFkdAkgDNSde6Z3V9lChoBmgJaA9DCIUHza77amdAlIaUUpRoFU3oA2gWR0CSAQqvvBrOdX2UKGgGaAloD0MI/Yf021daZ0CUhpRSlGgVTegDaBZHQJIBL/82rGR1fZQoaAZoCWgPQwgG2EenrutgQJSGlFKUaBVN6ANoFkdAkgOiVObiInV9lChoBmgJaA9DCCOCcXDpoGBAlIaUUpRoFU3oA2gWR0CSBAyjHn2adX2UKGgGaAloD0MIbApkdhaUZUCUhpRSlGgVTegDaBZHQJIF4a2nbZh1fZQoaAZoCWgPQwjbT8b4sKRmQJSGlFKUaBVN6ANoFkdAkg9OLm6oVHV9lChoBmgJaA9DCNRlMbF5Y2FAlIaUUpRoFU3oA2gWR0CSHYEZBLPEdX2UKGgGaAloD0MIzzC1pY4xYUCUhpRSlGgVTegDaBZHQJIlcNCqp991fZQoaAZoCWgPQwhpxw2/mzVmQJSGlFKUaBVN6ANoFkdAkibWygPEsXV9lChoBmgJaA9DCPdZZaY0m2BAlIaUUpRoFU3oA2gWR0CSKY7ihnJ1dX2UKGgGaAloD0MI/id/9445XkCUhpRSlGgVTegDaBZHQJIqLSOR1YB1fZQoaAZoCWgPQwidnQyOEmRnQJSGlFKUaBVN6ANoFkdAkkAcqBmPHXV9lChoBmgJaA9DCK7zb5f9I2ZAlIaUUpRoFU3oA2gWR0CSTdaGpMpPdX2UKGgGaAloD0MIw/UoXI96YkCUhpRSlGgVTegDaBZHQJJSMkY4yXV1fZQoaAZoCWgPQwjJdyl1Sc9gQJSGlFKUaBVN6ANoFkdAkll9CZ4Oc3V9lChoBmgJaA9DCOfHX1pUfGhAlIaUUpRoFU3oA2gWR0CSXw4tHxz8dX2UKGgGaAloD0MIYRxcOuZWZECUhpRSlGgVTegDaBZHQJJfSiYb83x1fZQoaAZoCWgPQwgF+G7zxuRdQJSGlFKUaBVN6ANoFkdAkl+DU7Sy+3V9lChoBmgJaA9DCLaBO1Cng19AlIaUUpRoFU3oA2gWR0CSYj1EmY0EdX2UKGgGaAloD0MImnrdIjDXYECUhpRSlGgVTegDaBZHQJJiutnwob51fZQoaAZoCWgPQwie6pCb4YVjQJSGlFKUaBVN6ANoFkdAkmTHGn4wiHV9lChoBmgJaA9DCORME7YfKmZAlIaUUpRoFU3oA2gWR0CSbtYKIBRydX2UKGgGaAloD0MI2JqtvOTNX0CUhpRSlGgVTegDaBZHQJJ5Iu14Pf91fZQoaAZoCWgPQwhTtHIvMNViQJSGlFKUaBVN6ANoFkdAkn91KXfIjnV9lChoBmgJaA9DCPhQoiWPUGVAlIaUUpRoFU3oA2gWR0CSgVE+gUUPdX2UKGgGaAloD0MIgzEiUWhoZ0CUhpRSlGgVTegDaBZHQJKEz/Pw/gR1fZQoaAZoCWgPQwgvou2YurhfQJSGlFKUaBVN6ANoFkdAkoWdD+irUHV9lChoBmgJaA9DCOaSqu0mzmFAlIaUUpRoFU3oA2gWR0CShxytmthedX2UKGgGaAloD0MIqAGDpM9oZUCUhpRSlGgVTegDaBZHQJKsn5Jsfq51fZQoaAZoCWgPQwgujzUjgxJeQJSGlFKUaBVN6ANoFkdAkrCFIRRMvnV9lChoBmgJaA9DCMo2cAfq4GBAlIaUUpRoFU3oA2gWR0CStvJfICEIdX2UKGgGaAloD0MIem02VuLWZkCUhpRSlGgVTegDaBZHQJK7w0cfeUJ1fZQoaAZoCWgPQwi+hXXj3TFkQJSGlFKUaBVN6ANoFkdAkrv13EAHV3V9lChoBmgJaA9DCMO2RZmN6WZAlIaUUpRoFU3oA2gWR0CSvDLl3hXKdX2UKGgGaAloD0MIe4hGd5B0YkCUhpRSlGgVTegDaBZHQJK/mjN6gNB1fZQoaAZoCWgPQwheY5eo3shiQJSGlFKUaBVN6ANoFkdAksBHH/95yHV9lChoBmgJaA9DCEc7bvhdF2VAlIaUUpRoFU3oA2gWR0CSwweyzHCGdX2UKGgGaAloD0MIUu+pnPbpYkCUhpRSlGgVTegDaBZHQJLQH1tfoid1fZQoaAZoCWgPQwh+GYwRidVeQJSGlFKUaBVN6ANoFkdAktmnR9gF5nV9lChoBmgJaA9DCEcBomBGymVAlIaUUpRoFU3oA2gWR0CS38uMuOCHdX2UKGgGaAloD0MI860P6w3nZ0CUhpRSlGgVTegDaBZHQJLg7FdcB2h1fZQoaAZoCWgPQwhy/FBpxG9iQJSGlFKUaBVN6ANoFkdAkuMZ1A7gbnV9lChoBmgJaA9DCN6SHLArjmRAlIaUUpRoFU3oA2gWR0CS45B7eEZjdX2UKGgGaAloD0MIGXWtvU8ZZUCUhpRSlGgVTegDaBZHQJLkYGW2PT51fZQoaAZoCWgPQwg7Oq5G9h5lQJSGlFKUaBVN6ANoFkdAkwMcOwxFiXV9lChoBmgJaA9DCJxqLcxCxGNAlIaUUpRoFU3oA2gWR0CTBjK77Kq5dX2UKGgGaAloD0MIuOo6VFNSY0CUhpRSlGgVTegDaBZHQJMLPEOy3Td1fZQoaAZoCWgPQwjUu3g/bl9lQJSGlFKUaBVN6ANoFkdAkw8db9qDb3V9lChoBmgJaA9DCEcBomDGf2NAlIaUUpRoFU3oA2gWR0CTD072criEdX2UKGgGaAloD0MIkszqHW53Y0CUhpRSlGgVTegDaBZHQJMPdoysS011fZQoaAZoCWgPQwhbeF4qtplgQJSGlFKUaBVN6ANoFkdAkxFzMA3kxXV9lChoBmgJaA9DCGq8dJOY5mNAlIaUUpRoFU3oA2gWR0CTEdbfxc3VdX2UKGgGaAloD0MI6ndhazb+Y0CUhpRSlGgVTegDaBZHQJMTbm4iHIp1fZQoaAZoCWgPQwiBP/z8d4plQJSGlFKUaBVN6ANoFkdAkxuqSDAaenV9lChoBmgJaA9DCLH8+bbgVWRAlIaUUpRoFU3oA2gWR0CTJARf4REndX2UKGgGaAloD0MIQieEDjqSYUCUhpRSlGgVTegDaBZHQJMp5G7SRbN1fZQoaAZoCWgPQwhR3sfRHDBhQJSGlFKUaBVN6ANoFkdAkyshLPD503V9lChoBmgJaA9DCIbnpWJjKmVAlIaUUpRoFU3oA2gWR0CTLWfDDTBqdX2UKGgGaAloD0MI6l4n9WUvYUCUhpRSlGgVTegDaBZHQJMt/L1VYIV1fZQoaAZoCWgPQwhZMsfyLnxjQJSGlFKUaBVN6ANoFkdAky7y704BFXV9lChoBmgJaA9DCI50BkbecmNAlIaUUpRoFU3oA2gWR0CTTwKlpGnXdX2UKGgGaAloD0MIodl1b0WpYUCUhpRSlGgVTegDaBZHQJNSrl7tzCF1fZQoaAZoCWgPQwjh8e1dg6hkQJSGlFKUaBVN6ANoFkdAk1knQla8pXV9lChoBmgJaA9DCD0racU3EGJAlIaUUpRoFU3oA2gWR0CTXgvx6OYIdX2UKGgGaAloD0MIycwFLg/PYkCUhpRSlGgVTegDaBZHQJNeSt1ZDAt1fZQoaAZoCWgPQwglBKvqZQ1mQJSGlFKUaBVN6ANoFkdAk15wp4KQaXV9lChoBmgJaA9DCKSoM/cQ52RAlIaUUpRoFU3oA2gWR0CTYNdhRZU2dX2UKGgGaAloD0MIaafmcoPBZkCUhpRSlGgVTegDaBZHQJNhSJKraM91fZQoaAZoCWgPQwjK4v4j0wdjQJSGlFKUaBVN6ANoFkdAk2MwLRa5gHV9lChoBmgJaA9DCFbT9UTXF0xAlIaUUpRoFU0KAWgWR0CTaQD0lJHzdX2UKGgGaAloD0MIMgG/RpL5YkCUhpRSlGgVTegDaBZHQJNueFxn3+N1fZQoaAZoCWgPQwgk1AypIlhmQJSGlFKUaBVN6ANoFkdAk3wz9n9NvnV9lChoBmgJaA9DCHbgnBGlGGlAlIaUUpRoFU3oA2gWR0CTgyHeJpFkdX2UKGgGaAloD0MImsx4W+mKYECUhpRSlGgVTegDaBZHQJOEmeJ53Tx1fZQoaAZoCWgPQwg7/DVZo2lkQJSGlFKUaBVN6ANoFkdAk4dyJCSid3V9lChoBmgJaA9DCKPIWkMp2GJAlIaUUpRoFU3oA2gWR0CTiAeUILPVdX2UKGgGaAloD0MI/YaJBqmCZUCUhpRSlGgVTegDaBZHQJOJGZ2IO6N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6bc2e4d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6bc2e4dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6bc2e4e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6bc2e4ee0>", "_build": "<function ActorCriticPolicy._build at 0x7fd6bc2e4f70>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6bc2ea040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6bc2ea0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6bc2ea160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6bc2ea1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6bc2ea280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6bc2ea310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd6bc2e62a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670485664965780497, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAwWLzoo7M9F+AevaMLm74Iy/u98CKcPAAAAAAAAAAAjR/KPcNNfrpm9Zo1ImLhLJK5+roh4aq0AACAPwAAAAAzjr69R8zQPhh10j2bUMW+CRc0PNoyOL0AAAAAAAAAAJpzNjy2LXg/eijUvUwVBr9at709ejUGvgAAAAAAAAAAZjhtvXitmD3u34o+QjiKvkmKXz0qvoc8AAAAAAAAAADNXI46f0w5P9IToLzl29u+xv2OPYarWLwAAAAAAAAAAADD57w/c5c/7mLavaKOE7+Tj9E4wh4TvQAAAAAAAAAAAIIkPI+uebooi2YzoF4qLFwGJDpCqsKzAACAPwAAgD8Ahm+9jwtSO0YjGD75goO+q/FXvUfLoz8AAAAAAAAAAM23LL0cTFk9hFI+PCIy7r6XgQa/XIaZPQAAgD8AAAAAs0sivZXHnT+q8ki+6b0cv8YcB70eVrq9AAAAAAAAAACaUUY8SK+hungWnjjJhWQzDvXfuG95tbcAAIA/AACAP2buYLspmHu6MUeCtaajdrDl/mE7nua5NAAAgD8AAIA/GlZtvdvUhz1A75E+Gy2fvuAbeD0KtkM9AAAAAAAAAACN7QO+kw9GP8BDKL7atgm/FEYuviwmFr0AAAAAAAAAAGYWkD0psE669LIZPJ5gLjlHRkW7c9EpOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoRSt3Et4cECUhpRSlIwBbJRLz4wBdJRHQKYD+BYFJQN1fZQoaAZoCWgPQwjAIr9+iNpuQJSGlFKUaBVLyWgWR0CmBFQCr92pdX2UKGgGaAloD0MIO1J95xfFcECUhpRSlGgVS89oFkdApgRmGEf1YnV9lChoBmgJaA9DCP4N2qvPmXJAlIaUUpRoFUvraBZHQKYEwWj45951fZQoaAZoCWgPQwg6I0p7gwpwQJSGlFKUaBVLzmgWR0CmBM1qnFYMdX2UKGgGaAloD0MIvTjx1c4lckCUhpRSlGgVS/5oFkdApgUx35eqrHV9lChoBmgJaA9DCBqH+l1YoXJAlIaUUpRoFUvnaBZHQKYFOwxFiKB1fZQoaAZoCWgPQwhHkEqx47pxQJSGlFKUaBVLymgWR0CmBUphF3INdX2UKGgGaAloD0MIt0QuOEOMcECUhpRSlGgVS91oFkdApgVwJokAxXV9lChoBmgJaA9DCN0lcVbEDnFAlIaUUpRoFUvvaBZHQKYF24dZJTV1fZQoaAZoCWgPQwgY0uEhDPpvQJSGlFKUaBVL0WgWR0CmBfB3iaRZdX2UKGgGaAloD0MIveXqx6a8ckCUhpRSlGgVS9poFkdApgX56fJ3gXV9lChoBmgJaA9DCJTeN7424XFAlIaUUpRoFUvQaBZHQKYGGWY4Qz11fZQoaAZoCWgPQwiUEoJV9bhyQJSGlFKUaBVL52gWR0CmBiUIsyzpdX2UKGgGaAloD0MIGsBbIEFubUCUhpRSlGgVS85oFkdApgY2U8mrsHV9lChoBmgJaA9DCDylg/X/5HBAlIaUUpRoFUvoaBZHQKYGROmixml1fZQoaAZoCWgPQwhFKowtBFdwQJSGlFKUaBVL2GgWR0CmBmQtapxWdX2UKGgGaAloD0MIkE3yI37uckCUhpRSlGgVS99oFkdApgbREc81XXV9lChoBmgJaA9DCLhX5q36ZnBAlIaUUpRoFUvgaBZHQKYG3+l0o0B1fZQoaAZoCWgPQwgS3bOu0QFSQJSGlFKUaBVLmmgWR0CmByRceKbbdX2UKGgGaAloD0MIzZTW39L+ckCUhpRSlGgVS9ZoFkdApgcspgCwKXV9lChoBmgJaA9DCA1QGmqUmHJAlIaUUpRoFUvdaBZHQKYHRq7Ackt1fZQoaAZoCWgPQwg9uDtrt65wQJSGlFKUaBVLxGgWR0CmB2NwrDqGdX2UKGgGaAloD0MIbLBwkqZEcECUhpRSlGgVS8xoFkdApgd+MIeHSHV9lChoBmgJaA9DCOQViJ7UHHNAlIaUUpRoFUvsaBZHQKYHvUlzEJl1fZQoaAZoCWgPQwi9VGzMq2JxQJSGlFKUaBVLxmgWR0CmB/jQiRnwdX2UKGgGaAloD0MIm1d1VovZckCUhpRSlGgVS+BoFkdAphKnSWqtHXV9lChoBmgJaA9DCHgLJCj+KW5AlIaUUpRoFUvQaBZHQKYSuEW69TR1fZQoaAZoCWgPQwj5npEIjctvQJSGlFKUaBVL2mgWR0CmErpXIU8FdX2UKGgGaAloD0MI9UnusMnWcUCUhpRSlGgVS8poFkdAphK5zgdfcHV9lChoBmgJaA9DCFN7EW1Ht3FAlIaUUpRoFUvcaBZHQKYSxzkIX0p1fZQoaAZoCWgPQwhdGVQbHBZvQJSGlFKUaBVL1GgWR0CmEvQazeGgdX2UKGgGaAloD0MI2c2MfvRAc0CUhpRSlGgVS/toFkdAphL5mmLtNXV9lChoBmgJaA9DCBDn4QSmyXJAlIaUUpRoFUvAaBZHQKYTQkk8ifR1fZQoaAZoCWgPQwhRMjm1s9htQJSGlFKUaBVL1WgWR0CmE2n6l+EzdX2UKGgGaAloD0MIhBJm2r5FcECUhpRSlGgVS8ZoFkdAphOTp9qk/XV9lChoBmgJaA9DCPK20mszb3BAlIaUUpRoFUvRaBZHQKYTsFUQ0411fZQoaAZoCWgPQwhCeLRxxM9xQJSGlFKUaBVL0GgWR0CmE83qRlpXdX2UKGgGaAloD0MIZyjueBNVckCUhpRSlGgVS89oFkdAphPpqubI93V9lChoBmgJaA9DCKK4400+F3JAlIaUUpRoFUvFaBZHQKYUKzByjpN1fZQoaAZoCWgPQwhlbr4RHXlyQJSGlFKUaBVL+2gWR0CmFHkFwDNhdX2UKGgGaAloD0MIIEWduYfocUCUhpRSlGgVS8BoFkdAphTAd8zAOHV9lChoBmgJaA9DCGKelbQi3nBAlIaUUpRoFUvnaBZHQKYUzMfzSTh1fZQoaAZoCWgPQwiLql/p/IpxQJSGlFKUaBVLwWgWR0CmFNjslb/wdX2UKGgGaAloD0MI+daH9caUcECUhpRSlGgVS9hoFkdAphT5bGFSKnV9lChoBmgJaA9DCP5F0JjJ6W1AlIaUUpRoFUvVaBZHQKYVBzshPj51fZQoaAZoCWgPQwi+bDttzU1xQJSGlFKUaBVLv2gWR0CmFQuc2BJ7dX2UKGgGaAloD0MILsVVZR/ncUCUhpRSlGgVS9ZoFkdAphUK+pOvdXV9lChoBmgJaA9DCIRkARP4nHJAlIaUUpRoFUvxaBZHQKYVtuOS4e91fZQoaAZoCWgPQwh6jV2ieuZzQJSGlFKUaBVL02gWR0CmFfAFxGUfdX2UKGgGaAloD0MIoRSt3Mv1cUCUhpRSlGgVS/poFkdAphaAob4rSXV9lChoBmgJaA9DCOBm8WKhN3NAlIaUUpRoFUvnaBZHQKYWrs6aLGd1fZQoaAZoCWgPQwgKuVLPAj1xQJSGlFKUaBVL5GgWR0CmFsjHn2ZidX2UKGgGaAloD0MIirDh6dX9cUCUhpRSlGgVS+toFkdAphcQNPP9k3V9lChoBmgJaA9DCGhCk8TS3HFAlIaUUpRoFUvnaBZHQKYXKaRZED11fZQoaAZoCWgPQwjDYWngh+tyQJSGlFKUaBVL22gWR0CmF2oK+i8GdX2UKGgGaAloD0MIyJqRQS57cECUhpRSlGgVS8poFkdAphgyaVlf7nV9lChoBmgJaA9DCJz6QPJOxXJAlIaUUpRoFUvxaBZHQKYYVpUxVQ11fZQoaAZoCWgPQwg9EFmkCRJyQJSGlFKUaBVLwmgWR0CmGFsUZeiSdX2UKGgGaAloD0MIigCnd/ElcUCUhpRSlGgVS8loFkdAphhkkMTewnV9lChoBmgJaA9DCPxSP2/qsXJAlIaUUpRoFUvbaBZHQKYYb+GXXy11fZQoaAZoCWgPQwg7jh8qjXJyQJSGlFKUaBVL62gWR0CmGKawMYuTdX2UKGgGaAloD0MI43DmVzN6cUCUhpRSlGgVS+poFkdAphj0STQmeHV9lChoBmgJaA9DCCqOA6+WAHBAlIaUUpRoFUvwaBZHQKYZDx8UmD11fZQoaAZoCWgPQwhd+MH51HluQJSGlFKUaBVL32gWR0CmGYTPa+N+dX2UKGgGaAloD0MIJc/1fXgxcUCUhpRSlGgVS9FoFkdAphnyzC1qnHV9lChoBmgJaA9DCEMDsWxmrHJAlIaUUpRoFUvYaBZHQKYaSJO32El1fZQoaAZoCWgPQwgzF7g8Fj5zQJSGlFKUaBVL/mgWR0CmGlH8jzI4dX2UKGgGaAloD0MIofSFkHOWc0CUhpRSlGgVS8VoFkdAphp8fms/6nV9lChoBmgJaA9DCGhZ94/FuXBAlIaUUpRoFUvdaBZHQKYafTm4iHJ1fZQoaAZoCWgPQwjNy2H3nQlwQJSGlFKUaBVL12gWR0CmGrO8K5TZdX2UKGgGaAloD0MIA+li08opcUCUhpRSlGgVS9VoFkdAphr57w8W9HV9lChoBmgJaA9DCEvoLomzuXBAlIaUUpRoFUvHaBZHQKYbrSWJJoV1fZQoaAZoCWgPQwhPdcjN8EVyQJSGlFKUaBVL1WgWR0CmG9M7MgU2dX2UKGgGaAloD0MIZf7RN+kFcUCUhpRSlGgVS99oFkdAphve03Ov+3V9lChoBmgJaA9DCL4tWKoLKW9AlIaUUpRoFUvMaBZHQKYcAny/bj91fZQoaAZoCWgPQwitbvWctFRyQJSGlFKUaBVL7mgWR0CmHErdFfAsdX2UKGgGaAloD0MIAvBPqVLrcUCUhpRSlGgVS/BoFkdAphxLHfdhzHV9lChoBmgJaA9DCKRt/InKfW9AlIaUUpRoFUvSaBZHQKYca+L3sX11fZQoaAZoCWgPQwjmlett83xzQJSGlFKUaBVL4WgWR0CmHVkka/ATdX2UKGgGaAloD0MIISOgwpGgc0CUhpRSlGgVTQsBaBZHQKYdkSM98qp1fZQoaAZoCWgPQwgEAp1Jm6pyQJSGlFKUaBVLwmgWR0CmHZ2D6FdtdX2UKGgGaAloD0MI1siutIyTckCUhpRSlGgVS8JoFkdAph3I7A+IM3V9lChoBmgJaA9DCDC45o6+0nNAlIaUUpRoFUvOaBZHQKYdzMGorFx1fZQoaAZoCWgPQwiga19AL/1wQJSGlFKUaBVLxmgWR0CmHkoOx0MgdX2UKGgGaAloD0MI8gwa+qdrckCUhpRSlGgVS+poFkdAph5cxqO94HV9lChoBmgJaA9DCO91Ul/W/nFAlIaUUpRoFU0SAWgWR0CmHn+t0V8DdX2UKGgGaAloD0MIoNy27xGHckCUhpRSlGgVS/BoFkdAph6bsdDIBHV9lChoBmgJaA9DCPjEOlU+tXBAlIaUUpRoFUvDaBZHQKYev2K2rn11fZQoaAZoCWgPQwifILHdPZNyQJSGlFKUaBVLxGgWR0CmHybZOBUadX2UKGgGaAloD0MIHAqfrYNWcECUhpRSlGgVS+poFkdAph9I4VARkHV9lChoBmgJaA9DCBL7BFBMHnNAlIaUUpRoFUvfaBZHQKYfRyaNMoN1fZQoaAZoCWgPQwibO/pfrrlyQJSGlFKUaBVLz2gWR0CmH0vS+g14dX2UKGgGaAloD0MIk1fnGFCIcUCUhpRSlGgVS+1oFkdAph9WaKDTSnV9lChoBmgJaA9DCOfFia+2tHBAlIaUUpRoFUvhaBZHQKYfjALy+Yd1fZQoaAZoCWgPQwivsrYpnm5yQJSGlFKUaBVLxmgWR0CmH/lkH2RJdX2UKGgGaAloD0MIVWe1wN59cECUhpRSlGgVS8VoFkdAph/+HrQgLnV9lChoBmgJaA9DCC213m+0XXBAlIaUUpRoFUvNaBZHQKYgLfhMrVh1fZQoaAZoCWgPQwixU6waBJdyQJSGlFKUaBVNAwFoFkdApiCJDu0CzXV9lChoBmgJaA9DCDIh5pIqoXBAlIaUUpRoFUvwaBZHQKYgkuh9LHx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_lunar.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:49448ac215d8dfbb1c1888fc55bdda5807b1361816351ba97a36bcf1d58d61be
3
- size 147218
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:151c477d5d74832178e00e43cb71b8429019bc2dc4876261f95dbb615aa5cae5
3
+ size 147090
ppo_lunar/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11b1661e50>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11b1661ee0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11b1661f70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11b1666040>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f11b16660d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f11b1666160>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11b16661f0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f11b1666280>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11b1666310>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11b16663a0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11b1666430>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f11b1660420>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1670482286800610669,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDGDz1I/Yy6EMBuuzuEHTi7yhS7TVmDtgAAgD8AAIA/MzlMPY8qWLoXRrQ67zBdNdTI7Dra3tK5AACAPwAAgD9NjQC99ugmuJ5GkTkEfxE06uJhO0fWrLgAAIA/AACAP5rJ97tI25C6OkU7u0RsJbWU09G5cPVYOgAAgD8AAIA/ZjN8PVJwvrnY2ds6dFQ+Nvn1ijp27gG6AACAPwAAgD8AW2Y9dtgYPz2SEr5aMI++GHgyvX4Sib0AAAAAAAAAADMLbbx7SJG61oHnOka+rjUkKOw6fNgFugAAgD8AAIA/ZoqkPI9OKLrqWuO62pLztWka3rpMIgc6AACAPwAAgD8zvOG8R8ACPspGHT7VYAS+UJDXPVLP17sAAAAAAAAAAJ46l74mElc/CYoxvdw5m76MkkK+ouW2PQAAAAAAAAAAM7LTPEhZkbpmbxe7EXbWtAFSKbu/pi46AACAPwAAgD+GaQi+irduPmZrXj19bWO+3esevTdvHLsAAAAAAAAAAGauOrx73oW6enInua1yCLRG1F25zd1COAAAgD8AAIA/xrwjPk9pR7wbaks6ZLdRuB2kpr2waoG5AACAPwAAgD+aT489hXO2uSZxULm5xa+0fKZGO/PGdjgAAIA/AACAP2YmcjoxKOo+PsGHvax1l75FF7e8hkfUugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +66,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfCx96ALgYUCUhpRSlIwBbJRN6AOMAXSUR0CRlJeLehwmdX2UKGgGaAloD0MIOllqvd/XYUCUhpRSlGgVTegDaBZHQJGVk6/7BO51fZQoaAZoCWgPQwh5sTBETvtjQJSGlFKUaBVN6ANoFkdAkaIsa86FNHV9lChoBmgJaA9DCLWlDvL6WGNAlIaUUpRoFU3oA2gWR0CRpfrnkkrxdX2UKGgGaAloD0MIu3uA7ssIY0CUhpRSlGgVTegDaBZHQJGsJun/DLt1fZQoaAZoCWgPQwivlGWIY59mQJSGlFKUaBVN6ANoFkdAkbDdELH+63V9lChoBmgJaA9DCAYsuYpFpGBAlIaUUpRoFU3oA2gWR0CRsRI1+AmRdX2UKGgGaAloD0MIMjz2s1jKZUCUhpRSlGgVTegDaBZHQJGxPBqKxcF1fZQoaAZoCWgPQwimttRB3oRlQJSGlFKUaBVN6ANoFkdAkbOP4EfT1HV9lChoBmgJaA9DCPlOzHqx6GVAlIaUUpRoFU3oA2gWR0CRs/lXzUZvdX2UKGgGaAloD0MIwcQfRZ1oYkCUhpRSlGgVTegDaBZHQJG15jqfOD91fZQoaAZoCWgPQwhoXg67b59jQJSGlFKUaBVN6ANoFkdAkbqvt+kP+XV9lChoBmgJaA9DCAkVHF4QB19AlIaUUpRoFU3oA2gWR0CRvj+Vkc0cdX2UKGgGaAloD0MIoPoHkQyJM0CUhpRSlGgVS9RoFkdAkcaQ+UyHmHV9lChoBmgJaA9DCA/R6A5i2WBAlIaUUpRoFU3oA2gWR0CRzDxyXD3udX2UKGgGaAloD0MIDtyBOuWjX0CUhpRSlGgVTegDaBZHQJHNcjkdWAB1fZQoaAZoCWgPQwhW9IdmnrRhQJSGlFKUaBVN6ANoFkdAkeR+ZXuE3HV9lChoBmgJaA9DCDHvcaaJf2ZAlIaUUpRoFU3oA2gWR0CR5RBzV+ZxdX2UKGgGaAloD0MIv4BeuHMFXkCUhpRSlGgVTegDaBZHQJHl+8rZrYZ1fZQoaAZoCWgPQwisx32rdVNjQJSGlFKUaBVN6ANoFkdAkfG5WmxdIHV9lChoBmgJaA9DCI/HDFRGtWFAlIaUUpRoFU3oA2gWR0CR9aA3DNyHdX2UKGgGaAloD0MIoDaq04HmZECUhpRSlGgVTegDaBZHQJH7/M+u/1x1fZQoaAZoCWgPQwj8Uj9vqthjQJSGlFKUaBVN6ANoFkdAkgDNSde6Z3V9lChoBmgJaA9DCIUHza77amdAlIaUUpRoFU3oA2gWR0CSAQqvvBrOdX2UKGgGaAloD0MI/Yf021daZ0CUhpRSlGgVTegDaBZHQJIBL/82rGR1fZQoaAZoCWgPQwgG2EenrutgQJSGlFKUaBVN6ANoFkdAkgOiVObiInV9lChoBmgJaA9DCCOCcXDpoGBAlIaUUpRoFU3oA2gWR0CSBAyjHn2adX2UKGgGaAloD0MIbApkdhaUZUCUhpRSlGgVTegDaBZHQJIF4a2nbZh1fZQoaAZoCWgPQwjbT8b4sKRmQJSGlFKUaBVN6ANoFkdAkg9OLm6oVHV9lChoBmgJaA9DCNRlMbF5Y2FAlIaUUpRoFU3oA2gWR0CSHYEZBLPEdX2UKGgGaAloD0MIzzC1pY4xYUCUhpRSlGgVTegDaBZHQJIlcNCqp991fZQoaAZoCWgPQwhpxw2/mzVmQJSGlFKUaBVN6ANoFkdAkibWygPEsXV9lChoBmgJaA9DCPdZZaY0m2BAlIaUUpRoFU3oA2gWR0CSKY7ihnJ1dX2UKGgGaAloD0MI/id/9445XkCUhpRSlGgVTegDaBZHQJIqLSOR1YB1fZQoaAZoCWgPQwidnQyOEmRnQJSGlFKUaBVN6ANoFkdAkkAcqBmPHXV9lChoBmgJaA9DCK7zb5f9I2ZAlIaUUpRoFU3oA2gWR0CSTdaGpMpPdX2UKGgGaAloD0MIw/UoXI96YkCUhpRSlGgVTegDaBZHQJJSMkY4yXV1fZQoaAZoCWgPQwjJdyl1Sc9gQJSGlFKUaBVN6ANoFkdAkll9CZ4Oc3V9lChoBmgJaA9DCOfHX1pUfGhAlIaUUpRoFU3oA2gWR0CSXw4tHxz8dX2UKGgGaAloD0MIYRxcOuZWZECUhpRSlGgVTegDaBZHQJJfSiYb83x1fZQoaAZoCWgPQwgF+G7zxuRdQJSGlFKUaBVN6ANoFkdAkl+DU7Sy+3V9lChoBmgJaA9DCLaBO1Cng19AlIaUUpRoFU3oA2gWR0CSYj1EmY0EdX2UKGgGaAloD0MImnrdIjDXYECUhpRSlGgVTegDaBZHQJJiutnwob51fZQoaAZoCWgPQwie6pCb4YVjQJSGlFKUaBVN6ANoFkdAkmTHGn4wiHV9lChoBmgJaA9DCORME7YfKmZAlIaUUpRoFU3oA2gWR0CSbtYKIBRydX2UKGgGaAloD0MI2JqtvOTNX0CUhpRSlGgVTegDaBZHQJJ5Iu14Pf91fZQoaAZoCWgPQwhTtHIvMNViQJSGlFKUaBVN6ANoFkdAkn91KXfIjnV9lChoBmgJaA9DCPhQoiWPUGVAlIaUUpRoFU3oA2gWR0CSgVE+gUUPdX2UKGgGaAloD0MIgzEiUWhoZ0CUhpRSlGgVTegDaBZHQJKEz/Pw/gR1fZQoaAZoCWgPQwgvou2YurhfQJSGlFKUaBVN6ANoFkdAkoWdD+irUHV9lChoBmgJaA9DCOaSqu0mzmFAlIaUUpRoFU3oA2gWR0CShxytmthedX2UKGgGaAloD0MIqAGDpM9oZUCUhpRSlGgVTegDaBZHQJKsn5Jsfq51fZQoaAZoCWgPQwgujzUjgxJeQJSGlFKUaBVN6ANoFkdAkrCFIRRMvnV9lChoBmgJaA9DCMo2cAfq4GBAlIaUUpRoFU3oA2gWR0CStvJfICEIdX2UKGgGaAloD0MIem02VuLWZkCUhpRSlGgVTegDaBZHQJK7w0cfeUJ1fZQoaAZoCWgPQwi+hXXj3TFkQJSGlFKUaBVN6ANoFkdAkrv13EAHV3V9lChoBmgJaA9DCMO2RZmN6WZAlIaUUpRoFU3oA2gWR0CSvDLl3hXKdX2UKGgGaAloD0MIe4hGd5B0YkCUhpRSlGgVTegDaBZHQJK/mjN6gNB1fZQoaAZoCWgPQwheY5eo3shiQJSGlFKUaBVN6ANoFkdAksBHH/95yHV9lChoBmgJaA9DCEc7bvhdF2VAlIaUUpRoFU3oA2gWR0CSwweyzHCGdX2UKGgGaAloD0MIUu+pnPbpYkCUhpRSlGgVTegDaBZHQJLQH1tfoid1fZQoaAZoCWgPQwh+GYwRidVeQJSGlFKUaBVN6ANoFkdAktmnR9gF5nV9lChoBmgJaA9DCEcBomBGymVAlIaUUpRoFU3oA2gWR0CS38uMuOCHdX2UKGgGaAloD0MI860P6w3nZ0CUhpRSlGgVTegDaBZHQJLg7FdcB2h1fZQoaAZoCWgPQwhy/FBpxG9iQJSGlFKUaBVN6ANoFkdAkuMZ1A7gbnV9lChoBmgJaA9DCN6SHLArjmRAlIaUUpRoFU3oA2gWR0CS45B7eEZjdX2UKGgGaAloD0MIGXWtvU8ZZUCUhpRSlGgVTegDaBZHQJLkYGW2PT51fZQoaAZoCWgPQwg7Oq5G9h5lQJSGlFKUaBVN6ANoFkdAkwMcOwxFiXV9lChoBmgJaA9DCJxqLcxCxGNAlIaUUpRoFU3oA2gWR0CTBjK77Kq5dX2UKGgGaAloD0MIuOo6VFNSY0CUhpRSlGgVTegDaBZHQJMLPEOy3Td1fZQoaAZoCWgPQwjUu3g/bl9lQJSGlFKUaBVN6ANoFkdAkw8db9qDb3V9lChoBmgJaA9DCEcBomDGf2NAlIaUUpRoFU3oA2gWR0CTD072criEdX2UKGgGaAloD0MIkszqHW53Y0CUhpRSlGgVTegDaBZHQJMPdoysS011fZQoaAZoCWgPQwhbeF4qtplgQJSGlFKUaBVN6ANoFkdAkxFzMA3kxXV9lChoBmgJaA9DCGq8dJOY5mNAlIaUUpRoFU3oA2gWR0CTEdbfxc3VdX2UKGgGaAloD0MI6ndhazb+Y0CUhpRSlGgVTegDaBZHQJMTbm4iHIp1fZQoaAZoCWgPQwiBP/z8d4plQJSGlFKUaBVN6ANoFkdAkxuqSDAaenV9lChoBmgJaA9DCLH8+bbgVWRAlIaUUpRoFU3oA2gWR0CTJARf4REndX2UKGgGaAloD0MIQieEDjqSYUCUhpRSlGgVTegDaBZHQJMp5G7SRbN1fZQoaAZoCWgPQwhR3sfRHDBhQJSGlFKUaBVN6ANoFkdAkyshLPD503V9lChoBmgJaA9DCIbnpWJjKmVAlIaUUpRoFU3oA2gWR0CTLWfDDTBqdX2UKGgGaAloD0MI6l4n9WUvYUCUhpRSlGgVTegDaBZHQJMt/L1VYIV1fZQoaAZoCWgPQwhZMsfyLnxjQJSGlFKUaBVN6ANoFkdAky7y704BFXV9lChoBmgJaA9DCI50BkbecmNAlIaUUpRoFU3oA2gWR0CTTwKlpGnXdX2UKGgGaAloD0MIodl1b0WpYUCUhpRSlGgVTegDaBZHQJNSrl7tzCF1fZQoaAZoCWgPQwjh8e1dg6hkQJSGlFKUaBVN6ANoFkdAk1knQla8pXV9lChoBmgJaA9DCD0racU3EGJAlIaUUpRoFU3oA2gWR0CTXgvx6OYIdX2UKGgGaAloD0MIycwFLg/PYkCUhpRSlGgVTegDaBZHQJNeSt1ZDAt1fZQoaAZoCWgPQwglBKvqZQ1mQJSGlFKUaBVN6ANoFkdAk15wp4KQaXV9lChoBmgJaA9DCKSoM/cQ52RAlIaUUpRoFU3oA2gWR0CTYNdhRZU2dX2UKGgGaAloD0MIaafmcoPBZkCUhpRSlGgVTegDaBZHQJNhSJKraM91fZQoaAZoCWgPQwjK4v4j0wdjQJSGlFKUaBVN6ANoFkdAk2MwLRa5gHV9lChoBmgJaA9DCFbT9UTXF0xAlIaUUpRoFU0KAWgWR0CTaQD0lJHzdX2UKGgGaAloD0MIMgG/RpL5YkCUhpRSlGgVTegDaBZHQJNueFxn3+N1fZQoaAZoCWgPQwgk1AypIlhmQJSGlFKUaBVN6ANoFkdAk3wz9n9NvnV9lChoBmgJaA9DCHbgnBGlGGlAlIaUUpRoFU3oA2gWR0CTgyHeJpFkdX2UKGgGaAloD0MImsx4W+mKYECUhpRSlGgVTegDaBZHQJOEmeJ53Tx1fZQoaAZoCWgPQwg7/DVZo2lkQJSGlFKUaBVN6ANoFkdAk4dyJCSid3V9lChoBmgJaA9DCKPIWkMp2GJAlIaUUpRoFU3oA2gWR0CTiAeUILPVdX2UKGgGaAloD0MI/YaJBqmCZUCUhpRSlGgVTegDaBZHQJOJGZ2IO6N1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6bc2e4d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6bc2e4dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6bc2e4e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6bc2e4ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd6bc2e4f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd6bc2ea040>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6bc2ea0d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd6bc2ea160>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6bc2ea1f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6bc2ea280>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6bc2ea310>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd6bc2e62a0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 3014656,
46
+ "_total_timesteps": 3000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1670485664965780497,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAwWLzoo7M9F+AevaMLm74Iy/u98CKcPAAAAAAAAAAAjR/KPcNNfrpm9Zo1ImLhLJK5+roh4aq0AACAPwAAAAAzjr69R8zQPhh10j2bUMW+CRc0PNoyOL0AAAAAAAAAAJpzNjy2LXg/eijUvUwVBr9at709ejUGvgAAAAAAAAAAZjhtvXitmD3u34o+QjiKvkmKXz0qvoc8AAAAAAAAAADNXI46f0w5P9IToLzl29u+xv2OPYarWLwAAAAAAAAAAADD57w/c5c/7mLavaKOE7+Tj9E4wh4TvQAAAAAAAAAAAIIkPI+uebooi2YzoF4qLFwGJDpCqsKzAACAPwAAgD8Ahm+9jwtSO0YjGD75goO+q/FXvUfLoz8AAAAAAAAAAM23LL0cTFk9hFI+PCIy7r6XgQa/XIaZPQAAgD8AAAAAs0sivZXHnT+q8ki+6b0cv8YcB70eVrq9AAAAAAAAAACaUUY8SK+hungWnjjJhWQzDvXfuG95tbcAAIA/AACAP2buYLspmHu6MUeCtaajdrDl/mE7nua5NAAAgD8AAIA/GlZtvdvUhz1A75E+Gy2fvuAbeD0KtkM9AAAAAAAAAACN7QO+kw9GP8BDKL7atgm/FEYuviwmFr0AAAAAAAAAAGYWkD0psE669LIZPJ5gLjlHRkW7c9EpOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoRSt3Et4cECUhpRSlIwBbJRLz4wBdJRHQKYD+BYFJQN1fZQoaAZoCWgPQwjAIr9+iNpuQJSGlFKUaBVLyWgWR0CmBFQCr92pdX2UKGgGaAloD0MIO1J95xfFcECUhpRSlGgVS89oFkdApgRmGEf1YnV9lChoBmgJaA9DCP4N2qvPmXJAlIaUUpRoFUvraBZHQKYEwWj45951fZQoaAZoCWgPQwg6I0p7gwpwQJSGlFKUaBVLzmgWR0CmBM1qnFYMdX2UKGgGaAloD0MIvTjx1c4lckCUhpRSlGgVS/5oFkdApgUx35eqrHV9lChoBmgJaA9DCBqH+l1YoXJAlIaUUpRoFUvnaBZHQKYFOwxFiKB1fZQoaAZoCWgPQwhHkEqx47pxQJSGlFKUaBVLymgWR0CmBUphF3INdX2UKGgGaAloD0MIt0QuOEOMcECUhpRSlGgVS91oFkdApgVwJokAxXV9lChoBmgJaA9DCN0lcVbEDnFAlIaUUpRoFUvvaBZHQKYF24dZJTV1fZQoaAZoCWgPQwgY0uEhDPpvQJSGlFKUaBVL0WgWR0CmBfB3iaRZdX2UKGgGaAloD0MIveXqx6a8ckCUhpRSlGgVS9poFkdApgX56fJ3gXV9lChoBmgJaA9DCJTeN7424XFAlIaUUpRoFUvQaBZHQKYGGWY4Qz11fZQoaAZoCWgPQwiUEoJV9bhyQJSGlFKUaBVL52gWR0CmBiUIsyzpdX2UKGgGaAloD0MIGsBbIEFubUCUhpRSlGgVS85oFkdApgY2U8mrsHV9lChoBmgJaA9DCDylg/X/5HBAlIaUUpRoFUvoaBZHQKYGROmixml1fZQoaAZoCWgPQwhFKowtBFdwQJSGlFKUaBVL2GgWR0CmBmQtapxWdX2UKGgGaAloD0MIkE3yI37uckCUhpRSlGgVS99oFkdApgbREc81XXV9lChoBmgJaA9DCLhX5q36ZnBAlIaUUpRoFUvgaBZHQKYG3+l0o0B1fZQoaAZoCWgPQwgS3bOu0QFSQJSGlFKUaBVLmmgWR0CmByRceKbbdX2UKGgGaAloD0MIzZTW39L+ckCUhpRSlGgVS9ZoFkdApgcspgCwKXV9lChoBmgJaA9DCA1QGmqUmHJAlIaUUpRoFUvdaBZHQKYHRq7Ackt1fZQoaAZoCWgPQwg9uDtrt65wQJSGlFKUaBVLxGgWR0CmB2NwrDqGdX2UKGgGaAloD0MIbLBwkqZEcECUhpRSlGgVS8xoFkdApgd+MIeHSHV9lChoBmgJaA9DCOQViJ7UHHNAlIaUUpRoFUvsaBZHQKYHvUlzEJl1fZQoaAZoCWgPQwi9VGzMq2JxQJSGlFKUaBVLxmgWR0CmB/jQiRnwdX2UKGgGaAloD0MIm1d1VovZckCUhpRSlGgVS+BoFkdAphKnSWqtHXV9lChoBmgJaA9DCHgLJCj+KW5AlIaUUpRoFUvQaBZHQKYSuEW69TR1fZQoaAZoCWgPQwj5npEIjctvQJSGlFKUaBVL2mgWR0CmErpXIU8FdX2UKGgGaAloD0MI9UnusMnWcUCUhpRSlGgVS8poFkdAphK5zgdfcHV9lChoBmgJaA9DCFN7EW1Ht3FAlIaUUpRoFUvcaBZHQKYSxzkIX0p1fZQoaAZoCWgPQwhdGVQbHBZvQJSGlFKUaBVL1GgWR0CmEvQazeGgdX2UKGgGaAloD0MI2c2MfvRAc0CUhpRSlGgVS/toFkdAphL5mmLtNXV9lChoBmgJaA9DCBDn4QSmyXJAlIaUUpRoFUvAaBZHQKYTQkk8ifR1fZQoaAZoCWgPQwhRMjm1s9htQJSGlFKUaBVL1WgWR0CmE2n6l+EzdX2UKGgGaAloD0MIhBJm2r5FcECUhpRSlGgVS8ZoFkdAphOTp9qk/XV9lChoBmgJaA9DCPK20mszb3BAlIaUUpRoFUvRaBZHQKYTsFUQ0411fZQoaAZoCWgPQwhCeLRxxM9xQJSGlFKUaBVL0GgWR0CmE83qRlpXdX2UKGgGaAloD0MIZyjueBNVckCUhpRSlGgVS89oFkdAphPpqubI93V9lChoBmgJaA9DCKK4400+F3JAlIaUUpRoFUvFaBZHQKYUKzByjpN1fZQoaAZoCWgPQwhlbr4RHXlyQJSGlFKUaBVL+2gWR0CmFHkFwDNhdX2UKGgGaAloD0MIIEWduYfocUCUhpRSlGgVS8BoFkdAphTAd8zAOHV9lChoBmgJaA9DCGKelbQi3nBAlIaUUpRoFUvnaBZHQKYUzMfzSTh1fZQoaAZoCWgPQwiLql/p/IpxQJSGlFKUaBVLwWgWR0CmFNjslb/wdX2UKGgGaAloD0MI+daH9caUcECUhpRSlGgVS9hoFkdAphT5bGFSKnV9lChoBmgJaA9DCP5F0JjJ6W1AlIaUUpRoFUvVaBZHQKYVBzshPj51fZQoaAZoCWgPQwi+bDttzU1xQJSGlFKUaBVLv2gWR0CmFQuc2BJ7dX2UKGgGaAloD0MILsVVZR/ncUCUhpRSlGgVS9ZoFkdAphUK+pOvdXV9lChoBmgJaA9DCIRkARP4nHJAlIaUUpRoFUvxaBZHQKYVtuOS4e91fZQoaAZoCWgPQwh6jV2ieuZzQJSGlFKUaBVL02gWR0CmFfAFxGUfdX2UKGgGaAloD0MIoRSt3Mv1cUCUhpRSlGgVS/poFkdAphaAob4rSXV9lChoBmgJaA9DCOBm8WKhN3NAlIaUUpRoFUvnaBZHQKYWrs6aLGd1fZQoaAZoCWgPQwgKuVLPAj1xQJSGlFKUaBVL5GgWR0CmFsjHn2ZidX2UKGgGaAloD0MIirDh6dX9cUCUhpRSlGgVS+toFkdAphcQNPP9k3V9lChoBmgJaA9DCGhCk8TS3HFAlIaUUpRoFUvnaBZHQKYXKaRZED11fZQoaAZoCWgPQwjDYWngh+tyQJSGlFKUaBVL22gWR0CmF2oK+i8GdX2UKGgGaAloD0MIyJqRQS57cECUhpRSlGgVS8poFkdAphgyaVlf7nV9lChoBmgJaA9DCJz6QPJOxXJAlIaUUpRoFUvxaBZHQKYYVpUxVQ11fZQoaAZoCWgPQwg9EFmkCRJyQJSGlFKUaBVLwmgWR0CmGFsUZeiSdX2UKGgGaAloD0MIigCnd/ElcUCUhpRSlGgVS8loFkdAphhkkMTewnV9lChoBmgJaA9DCPxSP2/qsXJAlIaUUpRoFUvbaBZHQKYYb+GXXy11fZQoaAZoCWgPQwg7jh8qjXJyQJSGlFKUaBVL62gWR0CmGKawMYuTdX2UKGgGaAloD0MI43DmVzN6cUCUhpRSlGgVS+poFkdAphj0STQmeHV9lChoBmgJaA9DCCqOA6+WAHBAlIaUUpRoFUvwaBZHQKYZDx8UmD11fZQoaAZoCWgPQwhd+MH51HluQJSGlFKUaBVL32gWR0CmGYTPa+N+dX2UKGgGaAloD0MIJc/1fXgxcUCUhpRSlGgVS9FoFkdAphnyzC1qnHV9lChoBmgJaA9DCEMDsWxmrHJAlIaUUpRoFUvYaBZHQKYaSJO32El1fZQoaAZoCWgPQwgzF7g8Fj5zQJSGlFKUaBVL/mgWR0CmGlH8jzI4dX2UKGgGaAloD0MIofSFkHOWc0CUhpRSlGgVS8VoFkdAphp8fms/6nV9lChoBmgJaA9DCGhZ94/FuXBAlIaUUpRoFUvdaBZHQKYafTm4iHJ1fZQoaAZoCWgPQwjNy2H3nQlwQJSGlFKUaBVL12gWR0CmGrO8K5TZdX2UKGgGaAloD0MIA+li08opcUCUhpRSlGgVS9VoFkdAphr57w8W9HV9lChoBmgJaA9DCEvoLomzuXBAlIaUUpRoFUvHaBZHQKYbrSWJJoV1fZQoaAZoCWgPQwhPdcjN8EVyQJSGlFKUaBVL1WgWR0CmG9M7MgU2dX2UKGgGaAloD0MIZf7RN+kFcUCUhpRSlGgVS99oFkdAphve03Ov+3V9lChoBmgJaA9DCL4tWKoLKW9AlIaUUpRoFUvMaBZHQKYcAny/bj91fZQoaAZoCWgPQwitbvWctFRyQJSGlFKUaBVL7mgWR0CmHErdFfAsdX2UKGgGaAloD0MIAvBPqVLrcUCUhpRSlGgVS/BoFkdAphxLHfdhzHV9lChoBmgJaA9DCKRt/InKfW9AlIaUUpRoFUvSaBZHQKYca+L3sX11fZQoaAZoCWgPQwjmlett83xzQJSGlFKUaBVL4WgWR0CmHVkka/ATdX2UKGgGaAloD0MIISOgwpGgc0CUhpRSlGgVTQsBaBZHQKYdkSM98qp1fZQoaAZoCWgPQwgEAp1Jm6pyQJSGlFKUaBVLwmgWR0CmHZ2D6FdtdX2UKGgGaAloD0MI1siutIyTckCUhpRSlGgVS8JoFkdAph3I7A+IM3V9lChoBmgJaA9DCDC45o6+0nNAlIaUUpRoFUvOaBZHQKYdzMGorFx1fZQoaAZoCWgPQwiga19AL/1wQJSGlFKUaBVLxmgWR0CmHkoOx0MgdX2UKGgGaAloD0MI8gwa+qdrckCUhpRSlGgVS+poFkdAph5cxqO94HV9lChoBmgJaA9DCO91Ul/W/nFAlIaUUpRoFU0SAWgWR0CmHn+t0V8DdX2UKGgGaAloD0MIoNy27xGHckCUhpRSlGgVS/BoFkdAph6bsdDIBHV9lChoBmgJaA9DCPjEOlU+tXBAlIaUUpRoFUvDaBZHQKYev2K2rn11fZQoaAZoCWgPQwifILHdPZNyQJSGlFKUaBVLxGgWR0CmHybZOBUadX2UKGgGaAloD0MIHAqfrYNWcECUhpRSlGgVS+poFkdAph9I4VARkHV9lChoBmgJaA9DCBL7BFBMHnNAlIaUUpRoFUvfaBZHQKYfRyaNMoN1fZQoaAZoCWgPQwibO/pfrrlyQJSGlFKUaBVLz2gWR0CmH0vS+g14dX2UKGgGaAloD0MIk1fnGFCIcUCUhpRSlGgVS+1oFkdAph9WaKDTSnV9lChoBmgJaA9DCOfFia+2tHBAlIaUUpRoFUvhaBZHQKYfjALy+Yd1fZQoaAZoCWgPQwivsrYpnm5yQJSGlFKUaBVLxmgWR0CmH/lkH2RJdX2UKGgGaAloD0MIVWe1wN59cECUhpRSlGgVS8VoFkdAph/+HrQgLnV9lChoBmgJaA9DCC213m+0XXBAlIaUUpRoFUvNaBZHQKYgLfhMrVh1fZQoaAZoCWgPQwixU6waBJdyQJSGlFKUaBVNAwFoFkdApiCJDu0CzXV9lChoBmgJaA9DCDIh5pIqoXBAlIaUUpRoFUvwaBZHQKYgkuh9LHx1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 736,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo_lunar/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:52d4f5b1233b76494848260454cc708db515ae7ab5fa9d9437a4e660927d6f27
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2aef8b4802ffcbcab91736127197ea954bdcb478e1fd00c2a1ec6c859024bfc
3
  size 87929
ppo_lunar/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ec8813a9567e23da462f7b1667d06ea2b261774abc00075b85377da7c806ea37
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26818be8f1a51908cd691da174d745c631dc98877bd9266f23e36e9e520e9cea
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 253.51102923248527, "std_reward": 24.539805139335844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T07:30:11.041926"}
 
1
+ {"mean_reward": 274.6871829767118, "std_reward": 17.03474111466228, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T08:38:47.224278"}