darklord25
commited on
Commit
•
c10198c
1
Parent(s):
96ed3dd
Upload model files
Browse files- models/R2D2_embedding.py +46 -0
- models/ResNet12_embedding.py +266 -0
- models/__pycache__/R2D2_embedding.cpython-36.pyc +0 -0
- models/__pycache__/R2D2_embedding.cpython-37.pyc +0 -0
- models/__pycache__/R2D2_embedding.cpython-38.pyc +0 -0
- models/__pycache__/ResNet12_embedding.cpython-36.pyc +0 -0
- models/__pycache__/ResNet12_embedding.cpython-37.pyc +0 -0
- models/__pycache__/ResNet12_embedding.cpython-38.pyc +0 -0
- models/__pycache__/ResNet12_embedding_ablation.cpython-37.pyc +0 -0
- models/__pycache__/Resnet_12_em.cpython-36.pyc +0 -0
- models/__pycache__/classification_heads.cpython-36.pyc +0 -0
- models/__pycache__/classification_heads.cpython-37.pyc +0 -0
- models/__pycache__/classification_heads.cpython-38.pyc +0 -0
- models/__pycache__/classification_heads.cpython-39.pyc +0 -0
- models/__pycache__/dropblock.cpython-36.pyc +0 -0
- models/__pycache__/dropblock.cpython-37.pyc +0 -0
- models/__pycache__/dropblock.cpython-38.pyc +0 -0
- models/__pycache__/protonet_embedding.cpython-36.pyc +0 -0
- models/__pycache__/protonet_embedding.cpython-37.pyc +0 -0
- models/__pycache__/protonet_embedding.cpython-38.pyc +0 -0
- models/__pycache__/vit.cpython-36.pyc +0 -0
- models/__pycache__/vit.cpython-37.pyc +0 -0
- models/__pycache__/vit.cpython-38.pyc +0 -0
- models/classification_heads.py +367 -0
- models/closerlook_classifier.py +28 -0
- models/dropblock.py +66 -0
- models/protonet_embedding.py +43 -0
- models/vit.py +127 -0
models/R2D2_embedding.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Embedding network used in Meta-learning with differentiable closed-form solvers
|
5 |
+
# (Bertinetto et al., in submission to NIPS 2018).
|
6 |
+
# They call the ridge rigressor version as "Ridge Regression Differentiable Discriminator (R2D2)."
|
7 |
+
|
8 |
+
# Note that they use a peculiar ordering of functions, namely conv-BN-pooling-lrelu,
|
9 |
+
# as opposed to the conventional one (conv-BN-lrelu-pooling).
|
10 |
+
|
11 |
+
def R2D2_conv_block(in_channels, out_channels, retain_activation=True, keep_prob=1.0):
|
12 |
+
block = nn.Sequential(
|
13 |
+
nn.Conv2d(in_channels, out_channels, 3, padding=1),
|
14 |
+
nn.BatchNorm2d(out_channels),
|
15 |
+
nn.MaxPool2d(2)
|
16 |
+
)
|
17 |
+
if retain_activation:
|
18 |
+
block.add_module("LeakyReLU", nn.LeakyReLU(0.1))
|
19 |
+
|
20 |
+
if keep_prob < 1.0:
|
21 |
+
block.add_module("Dropout", nn.Dropout(p=1 - keep_prob, inplace=False))
|
22 |
+
|
23 |
+
return block
|
24 |
+
|
25 |
+
class R2D2Embedding(nn.Module):
|
26 |
+
def __init__(self, x_dim=3, h1_dim=96, h2_dim=192, h3_dim=384, z_dim=512, \
|
27 |
+
retain_last_activation=False):
|
28 |
+
super(R2D2Embedding, self).__init__()
|
29 |
+
|
30 |
+
self.block1 = R2D2_conv_block(x_dim, h1_dim)
|
31 |
+
self.block2 = R2D2_conv_block(h1_dim, h2_dim)
|
32 |
+
self.block3 = R2D2_conv_block(h2_dim, h3_dim, keep_prob=0.9)
|
33 |
+
# In the last conv block, we disable activation function to boost the classification accuracy.
|
34 |
+
# This trick was proposed by Gidaris et al. (CVPR 2018).
|
35 |
+
# With this trick, the accuracy goes up from 50% to 51%.
|
36 |
+
# Although the authors of R2D2 did not mention this trick in the paper,
|
37 |
+
# we were unable to reproduce the result of Bertinetto et al. without resorting to this trick.
|
38 |
+
self.block4 = R2D2_conv_block(h3_dim, z_dim, retain_activation=retain_last_activation, keep_prob=0.7)
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
b1 = self.block1(x)
|
42 |
+
b2 = self.block2(b1)
|
43 |
+
b3 = self.block3(b2)
|
44 |
+
b4 = self.block4(b3)
|
45 |
+
# Flatten and concatenate the output of the 3rd and 4th conv blocks as proposed in R2D2 paper.
|
46 |
+
return torch.cat((b3.view(b3.size(0), -1), b4.view(b4.size(0), -1)), 1)
|
models/ResNet12_embedding.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from models.dropblock import DropBlock
|
7 |
+
from models.vit import ViT
|
8 |
+
from torchvision import models
|
9 |
+
import random
|
10 |
+
|
11 |
+
# This ResNet network was designed following the practice of the following papers:
|
12 |
+
# TADAM: Task dependent adaptive metric for improved few-shot learning (Oreshkin et al., in NIPS 2018) and
|
13 |
+
# A Simple Neural Attentive Meta-Learner (Mishra et al., in ICLR 2018).
|
14 |
+
|
15 |
+
|
16 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
17 |
+
"""3x3 convolution with padding"""
|
18 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
19 |
+
padding=1, bias=False)
|
20 |
+
|
21 |
+
|
22 |
+
class BasicBlock(nn.Module):
|
23 |
+
expansion = 1
|
24 |
+
|
25 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, drop_rate=0.0, drop_block=False, block_size=1):
|
26 |
+
super(BasicBlock, self).__init__()
|
27 |
+
self.conv1 = conv3x3(inplanes, planes)
|
28 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
29 |
+
self.relu = nn.LeakyReLU(0.1)
|
30 |
+
self.conv2 = conv3x3(planes, planes)
|
31 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
32 |
+
self.conv3 = conv3x3(planes, planes)
|
33 |
+
self.bn3 = nn.BatchNorm2d(planes)
|
34 |
+
self.maxpool = nn.MaxPool2d(stride)
|
35 |
+
self.downsample = downsample
|
36 |
+
self.stride = stride
|
37 |
+
self.drop_rate = drop_rate
|
38 |
+
self.num_batches_tracked = 0
|
39 |
+
self.drop_block = drop_block
|
40 |
+
self.block_size = block_size
|
41 |
+
self.DropBlock = DropBlock(block_size=self.block_size)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
self.num_batches_tracked += 1
|
45 |
+
|
46 |
+
residual = x
|
47 |
+
|
48 |
+
out = self.conv1(x)
|
49 |
+
out = self.bn1(out)
|
50 |
+
out = self.relu(out)
|
51 |
+
|
52 |
+
out = self.conv2(out)
|
53 |
+
out = self.bn2(out)
|
54 |
+
out = self.relu(out)
|
55 |
+
|
56 |
+
out = self.conv3(out)
|
57 |
+
out = self.bn3(out)
|
58 |
+
|
59 |
+
if self.downsample is not None:
|
60 |
+
residual = self.downsample(x)
|
61 |
+
out += residual
|
62 |
+
out = self.relu(out)
|
63 |
+
out = self.maxpool(out)
|
64 |
+
|
65 |
+
if self.drop_rate > 0:
|
66 |
+
if self.drop_block == True:
|
67 |
+
feat_size = out.size()[2]
|
68 |
+
keep_rate = max(1.0 - self.drop_rate / (20*2000) *
|
69 |
+
(self.num_batches_tracked), 1.0 - self.drop_rate)
|
70 |
+
gamma = (1 - keep_rate) / self.block_size**2 * \
|
71 |
+
feat_size**2 / (feat_size - self.block_size + 1)**2
|
72 |
+
out = self.DropBlock(out, gamma=gamma)
|
73 |
+
else:
|
74 |
+
out = F.dropout(out, p=self.drop_rate,
|
75 |
+
training=self.training, inplace=True)
|
76 |
+
|
77 |
+
return out
|
78 |
+
|
79 |
+
|
80 |
+
class ResNet(nn.Module):
|
81 |
+
|
82 |
+
def __init__(self, block, keep_prob=1.0, avg_pool=False, drop_rate=0.0, dropblock_size=5):
|
83 |
+
self.inplanes = 3
|
84 |
+
super(ResNet, self).__init__()
|
85 |
+
|
86 |
+
self.layer1 = self._make_layer(
|
87 |
+
block, 64, stride=2, drop_rate=drop_rate)
|
88 |
+
self.layer2 = self._make_layer(
|
89 |
+
block, 160, stride=2, drop_rate=drop_rate)
|
90 |
+
self.layer3 = self._make_layer(
|
91 |
+
block, 320, stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
|
92 |
+
self.layer4 = self._make_layer(
|
93 |
+
block, 640, stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
|
94 |
+
if avg_pool:
|
95 |
+
self.avgpool = nn.AvgPool2d(5, stride=1)
|
96 |
+
self.keep_prob = keep_prob
|
97 |
+
self.keep_avg_pool = avg_pool
|
98 |
+
self.dropout = nn.Dropout(p=1 - self.keep_prob, inplace=False)
|
99 |
+
self.drop_rate = drop_rate
|
100 |
+
self.linear1_1 = nn.Linear(2560, 512)
|
101 |
+
self.linear1_2 = nn.Linear(512, 64)
|
102 |
+
self.linear2_1 = nn.Linear(2560, 512)
|
103 |
+
self.linear2_2 = nn.Linear(512, 64)
|
104 |
+
self.linear3_1 = nn.Linear(2560, 512)
|
105 |
+
self.linear3_2 = nn.Linear(512, 64)
|
106 |
+
|
107 |
+
for m in self.modules():
|
108 |
+
if isinstance(m, nn.Conv2d):
|
109 |
+
nn.init.kaiming_normal_(
|
110 |
+
m.weight, mode='fan_out', nonlinearity='leaky_relu')
|
111 |
+
elif isinstance(m, nn.BatchNorm2d):
|
112 |
+
nn.init.constant_(m.weight, 1)
|
113 |
+
nn.init.constant_(m.bias, 0)
|
114 |
+
|
115 |
+
def _make_layer(self, block, planes, stride=1, drop_rate=0.0, drop_block=False, block_size=1):
|
116 |
+
downsample = None
|
117 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
118 |
+
downsample = nn.Sequential(
|
119 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
120 |
+
kernel_size=1, stride=1, bias=False),
|
121 |
+
nn.BatchNorm2d(planes * block.expansion),
|
122 |
+
)
|
123 |
+
|
124 |
+
layers = []
|
125 |
+
layers.append(block(self.inplanes, planes, stride,
|
126 |
+
downsample, drop_rate, drop_block, block_size))
|
127 |
+
self.inplanes = planes * block.expansion
|
128 |
+
|
129 |
+
return nn.Sequential(*layers)
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
x = self.layer1(x)
|
133 |
+
x = self.layer2(x)
|
134 |
+
x = self.layer3(x)
|
135 |
+
x = self.layer4(x)
|
136 |
+
if self.keep_avg_pool:
|
137 |
+
x = self.avgpool(x)
|
138 |
+
x = x.view(x.size(0), -1)
|
139 |
+
|
140 |
+
# x1 = F.relu(self.linear1_1(x))
|
141 |
+
# x1 = self.linear1_2(x1)
|
142 |
+
# x2 = F.relu(self.linear2_1(x))
|
143 |
+
# x2 = self.linear2_2(x2)
|
144 |
+
# x3 = F.relu(self.linear3_1(x))
|
145 |
+
# x3 = self.linear3_2(x3)
|
146 |
+
# return [x1, x2, x3]
|
147 |
+
return x
|
148 |
+
# return x
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
class custom_model(nn.Module):
|
153 |
+
|
154 |
+
def __init__(self,num_layer=5):
|
155 |
+
super(custom_model, self).__init__()
|
156 |
+
# self.classifier = timm.create_model('densenet121', pretrained=True)
|
157 |
+
self.classifier = timm.create_model('tf_efficientnet_b7_ns', pretrained=True)
|
158 |
+
# self.classifier = nn.Sequential(*list(classifier.children())[:-1])
|
159 |
+
self.num_layer = num_layer
|
160 |
+
# self.classifier = models.resnet34(pretrained=True, progress=True)
|
161 |
+
# self.classifier = ViT(
|
162 |
+
# image_size = 32,
|
163 |
+
# patch_size = 3,
|
164 |
+
# dim = 512,
|
165 |
+
# depth = 6,
|
166 |
+
# heads = 8,
|
167 |
+
# mlp_dim = 1000,
|
168 |
+
# dropout = 0.1,
|
169 |
+
# emb_dropout = 0.1
|
170 |
+
# )
|
171 |
+
|
172 |
+
# self.bn1 = nn.BatchNorm1d(num_features=1000)
|
173 |
+
self.bn2 = nn.BatchNorm1d(num_features=128)
|
174 |
+
self.dropout = nn.Dropout(0.4)
|
175 |
+
|
176 |
+
for i in range(num_layer):
|
177 |
+
setattr(self, "linear%d_1" % i, nn.Linear(1000,512))
|
178 |
+
setattr(self, "batch_norm%d_1" % i, nn.BatchNorm1d(num_features=512))
|
179 |
+
setattr(self, "linear%d_2" % i, nn.Linear(512,64))
|
180 |
+
# setattr(self, "linear%d_3" % i, nn.Linear(128,64))
|
181 |
+
|
182 |
+
for m in self.modules():
|
183 |
+
|
184 |
+
# if isinstance(m, nn.Conv2d):
|
185 |
+
# nn.init.kaiming_normal_(
|
186 |
+
# m.weight, mode='fan_out', nonlinearity='leaky_relu')
|
187 |
+
# elif isinstance(m, nn.BatchNorm2d):
|
188 |
+
# nn.init.constant_(m.weight, 1)
|
189 |
+
# nn.init.constant_(m.bias, 0)
|
190 |
+
|
191 |
+
if isinstance(m, nn.Linear):
|
192 |
+
|
193 |
+
# m.weight = nn.parameter.Parameter(torch.randn(m.out_features,m.in_features) * torch.sqrt(torch.tensor(2/m.in_features,requires_grad = True)))
|
194 |
+
y = m.in_features
|
195 |
+
y = random.randint(m.in_features/2,m.in_features)
|
196 |
+
m.weight.data.normal_(0.0, 1/np.sqrt(y))
|
197 |
+
# m.bias.data should be 0
|
198 |
+
# m.bias.data.fill_(0)
|
199 |
+
|
200 |
+
self.act = nn.ReLU()
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
x = self.classifier(x)
|
204 |
+
feat = []
|
205 |
+
|
206 |
+
# print(self.classifier.classifier.weight)
|
207 |
+
|
208 |
+
# feat = torch.zeros((self.num_layer,256))
|
209 |
+
for i in range(self.num_layer):
|
210 |
+
|
211 |
+
x1 = self.act(getattr(self,"batch_norm%d_1" % i)(getattr(self, "linear%d_1" % i)(x)))
|
212 |
+
x2 = getattr(self, "linear%d_2" % i)(x1)
|
213 |
+
feat.append(x2)
|
214 |
+
# print(getattr(self, "linear%d_1" % i).weight)
|
215 |
+
# weights.append(getattr(self, "linear%d_1" % i).weight)
|
216 |
+
|
217 |
+
|
218 |
+
feat = torch.stack(feat ,dim = 0)
|
219 |
+
# weights = torch.stack(weights,dim = 0)
|
220 |
+
# print(feat.size())
|
221 |
+
return feat
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
def conv_block(in_channels, out_channels):
|
227 |
+
'''
|
228 |
+
returns a block conv-bn-relu-pool
|
229 |
+
'''
|
230 |
+
return nn.Sequential(
|
231 |
+
nn.Conv2d(in_channels, out_channels, 3, padding=1),
|
232 |
+
nn.BatchNorm2d(out_channels),
|
233 |
+
nn.ReLU(),
|
234 |
+
nn.MaxPool2d(2)
|
235 |
+
)
|
236 |
+
|
237 |
+
|
238 |
+
class ProtoNet(nn.Module):
|
239 |
+
'''
|
240 |
+
Model as described in the reference paper,
|
241 |
+
source: https://github.com/jakesnell/prototypical-networks/blob/f0c48808e496989d01db59f86d4449d7aee9ab0c/protonets/models/few_shot.py#L62-L84
|
242 |
+
'''
|
243 |
+
def __init__(self, x_dim=3, hid_dim=64, z_dim=64):
|
244 |
+
super(ProtoNet, self).__init__()
|
245 |
+
self.encoder = nn.Sequential(
|
246 |
+
conv_block(x_dim, hid_dim),
|
247 |
+
conv_block(hid_dim, hid_dim),
|
248 |
+
conv_block(hid_dim, hid_dim),
|
249 |
+
conv_block(hid_dim, z_dim),
|
250 |
+
)
|
251 |
+
|
252 |
+
def forward(self, x):
|
253 |
+
x = self.encoder(x)
|
254 |
+
return [x.view(x.size(0), -1)]
|
255 |
+
|
256 |
+
|
257 |
+
def resnet12(keep_prob=1.0, avg_pool=False,num_layer=5, **kwargs):
|
258 |
+
"""Constructs a ResNet-12 model.
|
259 |
+
"""
|
260 |
+
# model = ResNet(BasicBlock, keep_prob=keep_prob,
|
261 |
+
# avg_pool=avg_pool, **kwargs)
|
262 |
+
model = custom_model(num_layer=num_layer)
|
263 |
+
# model = ProtoNet()
|
264 |
+
|
265 |
+
return model
|
266 |
+
|
models/__pycache__/R2D2_embedding.cpython-36.pyc
ADDED
Binary file (1.56 kB). View file
|
|
models/__pycache__/R2D2_embedding.cpython-37.pyc
ADDED
Binary file (1.56 kB). View file
|
|
models/__pycache__/R2D2_embedding.cpython-38.pyc
ADDED
Binary file (1.58 kB). View file
|
|
models/__pycache__/ResNet12_embedding.cpython-36.pyc
ADDED
Binary file (6.5 kB). View file
|
|
models/__pycache__/ResNet12_embedding.cpython-37.pyc
ADDED
Binary file (6.55 kB). View file
|
|
models/__pycache__/ResNet12_embedding.cpython-38.pyc
ADDED
Binary file (6.62 kB). View file
|
|
models/__pycache__/ResNet12_embedding_ablation.cpython-37.pyc
ADDED
Binary file (5.84 kB). View file
|
|
models/__pycache__/Resnet_12_em.cpython-36.pyc
ADDED
Binary file (6.61 kB). View file
|
|
models/__pycache__/classification_heads.cpython-36.pyc
ADDED
Binary file (8.92 kB). View file
|
|
models/__pycache__/classification_heads.cpython-37.pyc
ADDED
Binary file (8.89 kB). View file
|
|
models/__pycache__/classification_heads.cpython-38.pyc
ADDED
Binary file (8.93 kB). View file
|
|
models/__pycache__/classification_heads.cpython-39.pyc
ADDED
Binary file (8.9 kB). View file
|
|
models/__pycache__/dropblock.cpython-36.pyc
ADDED
Binary file (1.97 kB). View file
|
|
models/__pycache__/dropblock.cpython-37.pyc
ADDED
Binary file (1.97 kB). View file
|
|
models/__pycache__/dropblock.cpython-38.pyc
ADDED
Binary file (2 kB). View file
|
|
models/__pycache__/protonet_embedding.cpython-36.pyc
ADDED
Binary file (1.93 kB). View file
|
|
models/__pycache__/protonet_embedding.cpython-37.pyc
ADDED
Binary file (1.92 kB). View file
|
|
models/__pycache__/protonet_embedding.cpython-38.pyc
ADDED
Binary file (1.92 kB). View file
|
|
models/__pycache__/vit.cpython-36.pyc
ADDED
Binary file (5.38 kB). View file
|
|
models/__pycache__/vit.cpython-37.pyc
ADDED
Binary file (5.35 kB). View file
|
|
models/__pycache__/vit.cpython-38.pyc
ADDED
Binary file (5.26 kB). View file
|
|
models/classification_heads.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.autograd import Variable
|
6 |
+
import torch.nn as nn
|
7 |
+
#from qpth.qp import QPFunction
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
def sqrt_newton_schulz(A, numIters):
|
12 |
+
dim = A.shape[0]
|
13 |
+
normA = A.mul(A).sum(dim=0).sum(dim=0).sqrt()
|
14 |
+
Y = A.div(normA.expand_as(A))
|
15 |
+
I = torch.eye(dim, dim).float().cuda()
|
16 |
+
Z = torch.eye(dim, dim).float().cuda()
|
17 |
+
for i in range(numIters):
|
18 |
+
T = 0.5 * (3.0 * I - Z.mm(Y))
|
19 |
+
Y = Y.mm(T)
|
20 |
+
Z = T.mm(Z)
|
21 |
+
|
22 |
+
# sA = Y * torch.sqrt(normA).view(batchSize, 1, 1).expand_as(A)
|
23 |
+
|
24 |
+
# sA = Y * torch.sqrt(normA).expand_as(A)
|
25 |
+
|
26 |
+
sZ = Z * 1. / torch.sqrt(normA).expand_as(A)
|
27 |
+
return sZ
|
28 |
+
|
29 |
+
|
30 |
+
def polar_decompose(input):
|
31 |
+
# square_mat = input.mm(input.transpose(0, 1))
|
32 |
+
# square_mat = square_mat/torch.norm(torch.diag(square_mat), p=1)
|
33 |
+
# ortho_mat = self.sqrt_newton_schulz(square_mat, numIters=1)
|
34 |
+
|
35 |
+
square_mat = input.transpose(0, 1).mm(input)
|
36 |
+
sA_minushalf = sqrt_newton_schulz(square_mat, 1)
|
37 |
+
ortho_mat = input.mm(sA_minushalf)
|
38 |
+
|
39 |
+
# return ortho_mat
|
40 |
+
|
41 |
+
return ortho_mat.mm(ortho_mat.transpose(0, 1))
|
42 |
+
|
43 |
+
|
44 |
+
def computeGramMatrix(A, B):
|
45 |
+
"""
|
46 |
+
Constructs a linear kernel matrix between A and B.
|
47 |
+
We assume that each row in A and B represents a d-dimensional feature vector.
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
A: a (n_batch, n, d) Tensor.
|
51 |
+
B: a (n_batch, m, d) Tensor.
|
52 |
+
Returns: a (n_batch, n, m) Tensor.
|
53 |
+
"""
|
54 |
+
|
55 |
+
assert(A.dim() == 3)
|
56 |
+
assert(B.dim() == 3)
|
57 |
+
assert(A.size(0) == B.size(0) and A.size(2) == B.size(2))
|
58 |
+
|
59 |
+
return torch.bmm(A, B.transpose(1,2))
|
60 |
+
|
61 |
+
|
62 |
+
def binv(b_mat):
|
63 |
+
"""
|
64 |
+
Computes an inverse of each matrix in the batch.
|
65 |
+
Pytorch 0.4.1 does not support batched matrix inverse.
|
66 |
+
Hence, we are solving AX=I.
|
67 |
+
|
68 |
+
Parameters:
|
69 |
+
b_mat: a (n_batch, n, n) Tensor.
|
70 |
+
Returns: a (n_batch, n, n) Tensor.
|
71 |
+
"""
|
72 |
+
|
73 |
+
id_matrix = b_mat.new_ones(b_mat.size(-1)).diag().expand_as(b_mat).cuda()
|
74 |
+
b_inv, _ = torch.gesv(id_matrix, b_mat)
|
75 |
+
|
76 |
+
return b_inv
|
77 |
+
|
78 |
+
|
79 |
+
def one_hot(indices, depth):
|
80 |
+
"""
|
81 |
+
Returns a one-hot tensor.
|
82 |
+
This is a PyTorch equivalent of Tensorflow's tf.one_hot.
|
83 |
+
|
84 |
+
Parameters:
|
85 |
+
indices: a (n_batch, m) Tensor or (m) Tensor.
|
86 |
+
depth: a scalar. Represents the depth of the one hot dimension.
|
87 |
+
Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor.
|
88 |
+
"""
|
89 |
+
|
90 |
+
encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])).cuda()
|
91 |
+
index = indices.view(indices.size()+torch.Size([1]))
|
92 |
+
encoded_indicies = encoded_indicies.scatter_(1,index,1)
|
93 |
+
|
94 |
+
return encoded_indicies
|
95 |
+
|
96 |
+
def batched_kronecker(matrix1, matrix2):
|
97 |
+
matrix1_flatten = matrix1.reshape(matrix1.size()[0], -1)
|
98 |
+
matrix2_flatten = matrix2.reshape(matrix2.size()[0], -1)
|
99 |
+
return torch.bmm(matrix1_flatten.unsqueeze(2), matrix2_flatten.unsqueeze(1)).reshape([matrix1.size()[0]] + list(matrix1.size()[1:]) + list(matrix2.size()[1:])).permute([0, 1, 3, 2, 4]).reshape(matrix1.size(0), matrix1.size(1) * matrix2.size(1), matrix1.size(2) * matrix2.size(2))
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
################# uncomment this if you have installed QPFunction and run Ridge
|
105 |
+
# def MetaOptNetHead_Ridge(query, support, support_labels, n_way, n_shot, lambda_reg=50.0, double_precision=True):
|
106 |
+
# """
|
107 |
+
# Fits the support set with ridge regression and
|
108 |
+
# returns the classification score on the query set.
|
109 |
+
#
|
110 |
+
# Parameters:
|
111 |
+
# query: a (tasks_per_batch, n_query, d) Tensor.
|
112 |
+
# support: a (tasks_per_batch, n_support, d) Tensor.
|
113 |
+
# support_labels: a (tasks_per_batch, n_support) Tensor.
|
114 |
+
# n_way: a scalar. Represents the number of classes in a few-shot classification task.
|
115 |
+
# n_shot: a scalar. Represents the number of support examples given per class.
|
116 |
+
# lambda_reg: a scalar. Represents the strength of L2 regularization.
|
117 |
+
# Returns: a (tasks_per_batch, n_query, n_way) Tensor.
|
118 |
+
# """
|
119 |
+
#
|
120 |
+
# tasks_per_batch = query.size(0)
|
121 |
+
# n_support = support.size(1)
|
122 |
+
# n_query = query.size(1)
|
123 |
+
#
|
124 |
+
# assert(query.dim() == 3)
|
125 |
+
# assert(support.dim() == 3)
|
126 |
+
# assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
|
127 |
+
# assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
|
128 |
+
#
|
129 |
+
# #Here we solve the dual problem:
|
130 |
+
# #Note that the classes are indexed by m & samples are indexed by i.
|
131 |
+
# #min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i alpha^m_i
|
132 |
+
#
|
133 |
+
# #where w_m(\alpha) = \sum_i \alpha^m_i x_i,
|
134 |
+
#
|
135 |
+
# #\alpha is an (n_support, n_way) matrix
|
136 |
+
# kernel_matrix = computeGramMatrix(support, support)
|
137 |
+
# kernel_matrix += lambda_reg * torch.eye(n_support).expand(tasks_per_batch, n_support, n_support).cuda()
|
138 |
+
#
|
139 |
+
# block_kernel_matrix = kernel_matrix.repeat(n_way, 1, 1) #(n_way * tasks_per_batch, n_support, n_support)
|
140 |
+
#
|
141 |
+
# support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way) # (tasks_per_batch * n_support, n_way)
|
142 |
+
# support_labels_one_hot = support_labels_one_hot.transpose(0, 1) # (n_way, tasks_per_batch * n_support)
|
143 |
+
# support_labels_one_hot = support_labels_one_hot.reshape(n_way * tasks_per_batch, n_support) # (n_way*tasks_per_batch, n_support)
|
144 |
+
#
|
145 |
+
# G = block_kernel_matrix
|
146 |
+
# e = -2.0 * support_labels_one_hot
|
147 |
+
#
|
148 |
+
# #This is a fake inequlity constraint as qpth does not support QP without an inequality constraint.
|
149 |
+
# id_matrix_1 = torch.zeros(tasks_per_batch*n_way, n_support, n_support)
|
150 |
+
# C = Variable(id_matrix_1)
|
151 |
+
# h = Variable(torch.zeros((tasks_per_batch*n_way, n_support)))
|
152 |
+
# dummy = Variable(torch.Tensor()).cuda() # We want to ignore the equality constraint.
|
153 |
+
#
|
154 |
+
# #if double_precision:
|
155 |
+
# G, e, C, h = [x.double().cuda() for x in [G, e, C, h]]
|
156 |
+
#
|
157 |
+
#
|
158 |
+
# qp_sol = QPFunction(verbose=False)(G, e.detach(), C.detach(), h.detach(), dummy.detach(), dummy.detach())
|
159 |
+
# qp_sol = qp_sol.reshape(n_way, tasks_per_batch, n_support)
|
160 |
+
# qp_sol = qp_sol.permute(1, 2, 0)
|
161 |
+
#
|
162 |
+
#
|
163 |
+
# # Compute the classification score.
|
164 |
+
# compatibility = computeGramMatrix(support, query)
|
165 |
+
# compatibility = compatibility.float()
|
166 |
+
# compatibility = compatibility.unsqueeze(3).expand(tasks_per_batch, n_support, n_query, n_way)
|
167 |
+
# qp_sol = qp_sol.reshape(tasks_per_batch, n_support, n_way)
|
168 |
+
# logits = qp_sol.float().unsqueeze(2).expand(tasks_per_batch, n_support, n_query, n_way)
|
169 |
+
# logits = logits * compatibility
|
170 |
+
# logits = torch.sum(logits, 1)
|
171 |
+
#
|
172 |
+
# return logits
|
173 |
+
|
174 |
+
def R2D2Head(query, support, support_labels, n_way, n_shot, l2_regularizer_lambda=50.0):
|
175 |
+
"""
|
176 |
+
Fits the support set with ridge regression and
|
177 |
+
returns the classification score on the query set.
|
178 |
+
|
179 |
+
This model is the classification head described in:
|
180 |
+
Meta-learning with differentiable closed-form solvers
|
181 |
+
(Bertinetto et al., in submission to NIPS 2018).
|
182 |
+
|
183 |
+
Parameters:
|
184 |
+
query: a (tasks_per_batch, n_query, d) Tensor.
|
185 |
+
support: a (tasks_per_batch, n_support, d) Tensor.
|
186 |
+
support_labels: a (tasks_per_batch, n_support) Tensor.
|
187 |
+
n_way: a scalar. Represents the number of classes in a few-shot classification task.
|
188 |
+
n_shot: a scalar. Represents the number of support examples given per class.
|
189 |
+
l2_regularizer_lambda: a scalar. Represents the strength of L2 regularization.
|
190 |
+
Returns: a (tasks_per_batch, n_query, n_way) Tensor.
|
191 |
+
"""
|
192 |
+
|
193 |
+
tasks_per_batch = query.size(0)
|
194 |
+
n_support = support.size(1)
|
195 |
+
|
196 |
+
assert(query.dim() == 3)
|
197 |
+
assert(support.dim() == 3)
|
198 |
+
assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
|
199 |
+
assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
|
200 |
+
|
201 |
+
support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way)
|
202 |
+
support_labels_one_hot = support_labels_one_hot.view(tasks_per_batch, n_support, n_way)
|
203 |
+
|
204 |
+
id_matrix = torch.eye(n_support).expand(tasks_per_batch, n_support, n_support).cuda()
|
205 |
+
|
206 |
+
# Compute the dual form solution of the ridge regression.
|
207 |
+
# W = X^T(X X^T - lambda * I)^(-1) Y
|
208 |
+
ridge_sol = computeGramMatrix(support, support) + l2_regularizer_lambda * id_matrix
|
209 |
+
ridge_sol = binv(ridge_sol)
|
210 |
+
ridge_sol = torch.bmm(support.transpose(1,2), ridge_sol)
|
211 |
+
ridge_sol = torch.bmm(ridge_sol, support_labels_one_hot)
|
212 |
+
|
213 |
+
# Compute the classification score.
|
214 |
+
# score = W X
|
215 |
+
logits = torch.bmm(query, ridge_sol)
|
216 |
+
|
217 |
+
return logits
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
def ProtoNetHead(query, support, support_labels, n_way, n_shot, normalize=True):
|
222 |
+
"""
|
223 |
+
Constructs the prototype representation of each class(=mean of support vectors of each class) and
|
224 |
+
returns the classification score (=L2 distance to each class prototype) on the query set.
|
225 |
+
|
226 |
+
This model is the classification head described in:
|
227 |
+
Prototypical Networks for Few-shot Learning
|
228 |
+
(Snell et al., NIPS 2017).
|
229 |
+
|
230 |
+
Parameters:
|
231 |
+
query: a (tasks_per_batch, n_query, d) Tensor.
|
232 |
+
support: a (tasks_per_batch, n_support, d) Tensor.
|
233 |
+
support_labels: a (tasks_per_batch, n_support) Tensor.
|
234 |
+
n_way: a scalar. Represents the number of classes in a few-shot classification task.
|
235 |
+
n_shot: a scalar. Represents the number of support examples given per class.
|
236 |
+
normalize: a boolean. Represents whether if we want to normalize the distances by the embedding dimension.
|
237 |
+
Returns: a (tasks_per_batch, n_query, n_way) Tensor.
|
238 |
+
"""
|
239 |
+
|
240 |
+
tasks_per_batch = query.size(0)
|
241 |
+
n_support = support.size(1)
|
242 |
+
n_query = query.size(1)
|
243 |
+
d = query.size(2)
|
244 |
+
|
245 |
+
assert(query.dim() == 3)
|
246 |
+
assert(support.dim() == 3)
|
247 |
+
assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
|
248 |
+
assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
|
249 |
+
|
250 |
+
support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way)
|
251 |
+
support_labels_one_hot = support_labels_one_hot.view(tasks_per_batch, n_support, n_way)
|
252 |
+
|
253 |
+
# From:
|
254 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/architectures/PrototypicalNetworksHead.py
|
255 |
+
#************************* Compute Prototypes **************************
|
256 |
+
labels_train_transposed = support_labels_one_hot.transpose(1,2)
|
257 |
+
|
258 |
+
prototypes = torch.bmm(labels_train_transposed, support)
|
259 |
+
# Divide with the number of examples per novel category.
|
260 |
+
prototypes = prototypes.div(
|
261 |
+
labels_train_transposed.sum(dim=2, keepdim=True).expand_as(prototypes)
|
262 |
+
)
|
263 |
+
|
264 |
+
# Distance Matrix Vectorization Trick
|
265 |
+
AB = computeGramMatrix(query, prototypes)
|
266 |
+
AA = (query * query).sum(dim=2, keepdim=True)
|
267 |
+
BB = (prototypes * prototypes).sum(dim=2, keepdim=True).reshape(tasks_per_batch, 1, n_way)
|
268 |
+
logits = AA.expand_as(AB) - 2 * AB + BB.expand_as(AB)
|
269 |
+
logits = -logits
|
270 |
+
|
271 |
+
if normalize:
|
272 |
+
logits = logits / d
|
273 |
+
|
274 |
+
return logits
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
def SubspaceNetHead(query, support, support_labels, n_way, n_shot, normalize=True):
|
279 |
+
"""
|
280 |
+
Constructs the subspace representation of each class(=mean of support vectors of each class) and
|
281 |
+
returns the classification score (=L2 distance to each class prototype) on the query set.
|
282 |
+
|
283 |
+
Our algorithm using subspaces here
|
284 |
+
|
285 |
+
Parameters:
|
286 |
+
query: a (tasks_per_batch, n_query, d) Tensor.
|
287 |
+
support: a (tasks_per_batch, n_support, d) Tensor.
|
288 |
+
support_labels: a (tasks_per_batch, n_support) Tensor.
|
289 |
+
n_way: a scalar. Represents the number of classes in a few-shot classification task.
|
290 |
+
n_shot: a scalar. Represents the number of support examples given per class.
|
291 |
+
normalize: a boolean. Represents whether if we want to normalize the distances by the embedding dimension.
|
292 |
+
Returns: a (tasks_per_batch, n_query, n_way) Tensor.
|
293 |
+
"""
|
294 |
+
|
295 |
+
tasks_per_batch = query.size(0)
|
296 |
+
n_support = support.size(1)
|
297 |
+
n_query = query.size(1)
|
298 |
+
d = query.size(2)
|
299 |
+
|
300 |
+
assert(query.dim() == 3)
|
301 |
+
assert(support.dim() == 3)
|
302 |
+
assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
|
303 |
+
assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
|
304 |
+
|
305 |
+
support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way)
|
306 |
+
#support_labels_one_hot = support_labels_one_hot.view(tasks_per_batch, n_support, n_way)
|
307 |
+
|
308 |
+
|
309 |
+
support_reshape = support.view(tasks_per_batch * n_support, -1)
|
310 |
+
|
311 |
+
support_labels_reshaped = support_labels.contiguous().view(-1)
|
312 |
+
class_representatives = []
|
313 |
+
for nn in range(n_way):
|
314 |
+
idxss = torch.nonzero((support_labels_reshaped == nn),as_tuple=False)
|
315 |
+
all_support_perclass = support_reshape[idxss, :]
|
316 |
+
class_representatives.append(all_support_perclass.view(tasks_per_batch, n_shot, -1))
|
317 |
+
|
318 |
+
class_representatives = torch.stack(class_representatives)
|
319 |
+
class_representatives = class_representatives.transpose(0, 1) #tasks_per_batch, n_way, n_support, -1
|
320 |
+
class_representatives = class_representatives.transpose(2, 3).contiguous().view(tasks_per_batch*n_way, -1, n_shot)
|
321 |
+
|
322 |
+
dist = []
|
323 |
+
for cc in range(tasks_per_batch*n_way):
|
324 |
+
batch_idx = cc//n_way
|
325 |
+
qq = query[batch_idx]
|
326 |
+
uu, _, _ = torch.svd(class_representatives[cc].double())
|
327 |
+
uu = uu.float()
|
328 |
+
subspace = uu[:, :n_shot-1].transpose(0, 1)
|
329 |
+
projection = subspace.transpose(0, 1).mm(subspace.mm(qq.transpose(0, 1))).transpose(0, 1)
|
330 |
+
dist_perclass = torch.sum((qq - projection)**2, dim=-1)
|
331 |
+
dist.append(dist_perclass)
|
332 |
+
|
333 |
+
dist = torch.stack(dist).view(tasks_per_batch, n_way, -1).transpose(1, 2)
|
334 |
+
logits = -dist
|
335 |
+
|
336 |
+
if normalize:
|
337 |
+
logits = logits / d
|
338 |
+
|
339 |
+
return logits
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
class ClassificationHead(nn.Module):
|
345 |
+
def __init__(self, base_learner='MetaOptNet', enable_scale=True):
|
346 |
+
super(ClassificationHead, self).__init__()
|
347 |
+
if ('Subspace' in base_learner):
|
348 |
+
self.head = SubspaceNetHead
|
349 |
+
elif ('Ridge' in base_learner):
|
350 |
+
self.head = MetaOptNetHead_Ridge
|
351 |
+
elif ('R2D2' in base_learner):
|
352 |
+
self.head = R2D2Head
|
353 |
+
elif ('Proto' in base_learner):
|
354 |
+
self.head = ProtoNetHead
|
355 |
+
else:
|
356 |
+
print ("Cannot recognize the base learner type")
|
357 |
+
assert(False)
|
358 |
+
|
359 |
+
# Add a learnable scale
|
360 |
+
self.enable_scale = enable_scale
|
361 |
+
self.scale = nn.Parameter(torch.FloatTensor([1.0]))
|
362 |
+
|
363 |
+
def forward(self, query, support, support_labels, n_way, n_shot, **kwargs):
|
364 |
+
if self.enable_scale:
|
365 |
+
return self.scale * self.head(query, support, support_labels, n_way, n_shot, **kwargs)
|
366 |
+
else:
|
367 |
+
return self.head(query, support, support_labels, n_way, n_shot, **kwargs)
|
models/closerlook_classifier.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
from torch.nn.utils.weight_norm import WeightNorm
|
4 |
+
|
5 |
+
|
6 |
+
class distLinear(nn.Module):
|
7 |
+
def __init__(self, indim, outdim):
|
8 |
+
super(distLinear, self).__init__()
|
9 |
+
self.L = nn.Linear( indim, outdim, bias = False)
|
10 |
+
self.class_wise_learnable_norm = True #See the issue#4&8 in the github
|
11 |
+
if self.class_wise_learnable_norm:
|
12 |
+
WeightNorm.apply(self.L, 'weight', dim=0) #split the weight update component to direction and norm
|
13 |
+
|
14 |
+
if outdim <=200:
|
15 |
+
self.scale_factor = 2; #a fixed scale factor to scale the output of cos value into a reasonably large input for softmax, for to reproduce the result of CUB with ResNet10, use 4. see the issue#31 in the github
|
16 |
+
else:
|
17 |
+
self.scale_factor = 10; #in omniglot, a larger scale factor is required to handle >1000 output classes.
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x_norm = torch.norm(x, p=2, dim =1).unsqueeze(1).expand_as(x)
|
21 |
+
x_normalized = x.div(x_norm+ 0.00001)
|
22 |
+
if not self.class_wise_learnable_norm:
|
23 |
+
L_norm = torch.norm(self.L.weight.data, p=2, dim =1).unsqueeze(1).expand_as(self.L.weight.data)
|
24 |
+
self.L.weight.data = self.L.weight.data.div(L_norm + 0.00001)
|
25 |
+
cos_dist = self.L(x_normalized) #matrix product by forward function, but when using WeightNorm, this also multiply the cosine distance by a class-wise learnable norm, see the issue#4&8 in the github
|
26 |
+
scores = self.scale_factor* (cos_dist)
|
27 |
+
|
28 |
+
return scores
|
models/dropblock.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
from torch.distributions import Bernoulli
|
5 |
+
|
6 |
+
|
7 |
+
class DropBlock(nn.Module):
|
8 |
+
def __init__(self, block_size):
|
9 |
+
super(DropBlock, self).__init__()
|
10 |
+
|
11 |
+
self.block_size = block_size
|
12 |
+
#self.gamma = gamma
|
13 |
+
#self.bernouli = Bernoulli(gamma)
|
14 |
+
|
15 |
+
def forward(self, x, gamma):
|
16 |
+
# shape: (bsize, channels, height, width)
|
17 |
+
|
18 |
+
if self.training:
|
19 |
+
batch_size, channels, height, width = x.shape
|
20 |
+
|
21 |
+
bernoulli = Bernoulli(gamma)
|
22 |
+
mask = bernoulli.sample((batch_size, channels, height - (self.block_size - 1), width - (self.block_size - 1))).cuda()
|
23 |
+
#print((x.sample[-2], x.sample[-1]))
|
24 |
+
block_mask = self._compute_block_mask(mask)
|
25 |
+
#print (block_mask.size())
|
26 |
+
#print (x.size())
|
27 |
+
countM = block_mask.size()[0] * block_mask.size()[1] * block_mask.size()[2] * block_mask.size()[3]
|
28 |
+
count_ones = block_mask.sum()
|
29 |
+
|
30 |
+
return block_mask * x * (countM / count_ones)
|
31 |
+
else:
|
32 |
+
return x
|
33 |
+
|
34 |
+
def _compute_block_mask(self, mask):
|
35 |
+
left_padding = int((self.block_size-1) / 2)
|
36 |
+
right_padding = int(self.block_size / 2)
|
37 |
+
|
38 |
+
batch_size, channels, height, width = mask.shape
|
39 |
+
#print ("mask", mask[0][0])
|
40 |
+
non_zero_idxs = torch.nonzero(mask,as_tuple=False)
|
41 |
+
# print(type(non_zero_idxs))
|
42 |
+
# print(type(non_zero_idxs))
|
43 |
+
nr_blocks = non_zero_idxs.size(0)
|
44 |
+
|
45 |
+
offsets = torch.stack(
|
46 |
+
[
|
47 |
+
torch.arange(self.block_size).view(-1, 1).expand(self.block_size, self.block_size).reshape(-1), # - left_padding,
|
48 |
+
torch.arange(self.block_size).repeat(self.block_size), #- left_padding
|
49 |
+
]
|
50 |
+
).t().cuda()
|
51 |
+
offsets = torch.cat((torch.zeros(self.block_size**2, 2).cuda().long(), offsets.long()), 1)
|
52 |
+
|
53 |
+
if nr_blocks > 0:
|
54 |
+
non_zero_idxs = non_zero_idxs.repeat(self.block_size ** 2, 1)
|
55 |
+
offsets = offsets.repeat(nr_blocks, 1).view(-1, 4)
|
56 |
+
offsets = offsets.long()
|
57 |
+
|
58 |
+
block_idxs = non_zero_idxs + offsets
|
59 |
+
#block_idxs += left_padding
|
60 |
+
padded_mask = F.pad(mask, (left_padding, right_padding, left_padding, right_padding))
|
61 |
+
padded_mask[block_idxs[:, 0], block_idxs[:, 1], block_idxs[:, 2], block_idxs[:, 3]] = 1.
|
62 |
+
else:
|
63 |
+
padded_mask = F.pad(mask, (left_padding, right_padding, left_padding, right_padding))
|
64 |
+
|
65 |
+
block_mask = 1 - padded_mask#[:height, :width]
|
66 |
+
return block_mask
|
models/protonet_embedding.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import math
|
3 |
+
|
4 |
+
class ConvBlock(nn.Module):
|
5 |
+
def __init__(self, in_channels, out_channels, retain_activation=True):
|
6 |
+
super(ConvBlock, self).__init__()
|
7 |
+
|
8 |
+
self.block = nn.Sequential(
|
9 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
|
10 |
+
nn.BatchNorm2d(out_channels)
|
11 |
+
)
|
12 |
+
|
13 |
+
if retain_activation:
|
14 |
+
self.block.add_module("ReLU", nn.ReLU(inplace=True))
|
15 |
+
self.block.add_module("MaxPool2d", nn.MaxPool2d(kernel_size=2, stride=2, padding=0))
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
out = self.block(x)
|
19 |
+
return out
|
20 |
+
|
21 |
+
# Embedding network used in Matching Networks (Vinyals et al., NIPS 2016), Meta-LSTM (Ravi & Larochelle, ICLR 2017),
|
22 |
+
# MAML (w/ h_dim=z_dim=32) (Finn et al., ICML 2017), Prototypical Networks (Snell et al. NIPS 2017).
|
23 |
+
|
24 |
+
class ProtoNetEmbedding(nn.Module):
|
25 |
+
def __init__(self, x_dim=3, h_dim=64, z_dim=64, retain_last_activation=True):
|
26 |
+
super(ProtoNetEmbedding, self).__init__()
|
27 |
+
self.encoder = nn.Sequential(
|
28 |
+
ConvBlock(x_dim, h_dim),
|
29 |
+
ConvBlock(h_dim, h_dim),
|
30 |
+
ConvBlock(h_dim, h_dim),
|
31 |
+
ConvBlock(h_dim, z_dim, retain_activation=retain_last_activation),
|
32 |
+
)
|
33 |
+
for m in self.modules():
|
34 |
+
if isinstance(m, nn.Conv2d):
|
35 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
36 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
37 |
+
elif isinstance(m, nn.BatchNorm2d):
|
38 |
+
m.weight.data.fill_(1)
|
39 |
+
m.bias.data.zero_()
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
x = self.encoder(x)
|
43 |
+
return x.view(x.size(0), -1)
|
models/vit.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
MIN_NUM_PATCHES = 16
|
9 |
+
|
10 |
+
class Residual(nn.Module):
|
11 |
+
def __init__(self, fn):
|
12 |
+
super().__init__()
|
13 |
+
self.fn = fn
|
14 |
+
def forward(self, x, **kwargs):
|
15 |
+
return self.fn(x, **kwargs) + x
|
16 |
+
|
17 |
+
class PreNorm(nn.Module):
|
18 |
+
def __init__(self, dim, fn):
|
19 |
+
super().__init__()
|
20 |
+
self.norm = nn.LayerNorm(dim)
|
21 |
+
self.fn = fn
|
22 |
+
def forward(self, x, **kwargs):
|
23 |
+
return self.fn(self.norm(x), **kwargs)
|
24 |
+
|
25 |
+
class FeedForward(nn.Module):
|
26 |
+
def __init__(self, dim, hidden_dim, dropout = 0.):
|
27 |
+
super().__init__()
|
28 |
+
self.net = nn.Sequential(
|
29 |
+
nn.Linear(dim, hidden_dim),
|
30 |
+
nn.GELU(),
|
31 |
+
nn.Dropout(dropout),
|
32 |
+
nn.Linear(hidden_dim, dim),
|
33 |
+
nn.Dropout(dropout)
|
34 |
+
)
|
35 |
+
def forward(self, x):
|
36 |
+
return self.net(x)
|
37 |
+
|
38 |
+
class Attention(nn.Module):
|
39 |
+
def __init__(self, dim, heads = 8, dropout = 0.):
|
40 |
+
super().__init__()
|
41 |
+
self.heads = heads
|
42 |
+
self.scale = dim ** -0.5
|
43 |
+
|
44 |
+
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
|
45 |
+
self.to_out = nn.Sequential(
|
46 |
+
nn.Linear(dim, dim),
|
47 |
+
nn.Dropout(dropout)
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(self, x, mask = None):
|
51 |
+
b, n, _, h = *x.shape, self.heads
|
52 |
+
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
53 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
54 |
+
|
55 |
+
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
|
56 |
+
|
57 |
+
if mask is not None:
|
58 |
+
mask = F.pad(mask.flatten(1), (1, 0), value = True)
|
59 |
+
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
|
60 |
+
mask = mask[:, None, :] * mask[:, :, None]
|
61 |
+
dots.masked_fill_(~mask, float('-inf'))
|
62 |
+
del mask
|
63 |
+
|
64 |
+
attn = dots.softmax(dim=-1)
|
65 |
+
|
66 |
+
out = torch.einsum('bhij,bhjd->bhid', attn, v)
|
67 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
68 |
+
out = self.to_out(out)
|
69 |
+
return out
|
70 |
+
|
71 |
+
class Transformer(nn.Module):
|
72 |
+
def __init__(self, dim, depth, heads, mlp_dim, dropout):
|
73 |
+
super().__init__()
|
74 |
+
self.layers = nn.ModuleList([])
|
75 |
+
for _ in range(depth):
|
76 |
+
self.layers.append(nn.ModuleList([
|
77 |
+
Residual(PreNorm(dim, Attention(dim, heads = heads, dropout = dropout))),
|
78 |
+
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
|
79 |
+
]))
|
80 |
+
def forward(self, x, mask = None):
|
81 |
+
for attn, ff in self.layers:
|
82 |
+
x = attn(x, mask = mask)
|
83 |
+
x = ff(x)
|
84 |
+
return x
|
85 |
+
|
86 |
+
class ViT(nn.Module):
|
87 |
+
def __init__(self, *, image_size, patch_size, dim, depth, heads, mlp_dim, channels = 3, dropout = 0., emb_dropout = 0.):
|
88 |
+
super().__init__()
|
89 |
+
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
|
90 |
+
num_patches = (image_size // patch_size) ** 2
|
91 |
+
patch_dim = channels * patch_size ** 2
|
92 |
+
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective. try decreasing your patch size'
|
93 |
+
|
94 |
+
self.patch_size = patch_size
|
95 |
+
|
96 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
97 |
+
self.patch_to_embedding = nn.Linear(patch_dim, dim)
|
98 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
99 |
+
self.dropout = nn.Dropout(emb_dropout)
|
100 |
+
|
101 |
+
self.transformer = Transformer(dim, depth, heads, mlp_dim, dropout)
|
102 |
+
|
103 |
+
self.to_cls_token = nn.Identity()
|
104 |
+
|
105 |
+
self.mlp_head = nn.Sequential(
|
106 |
+
nn.LayerNorm(dim),
|
107 |
+
nn.Linear(dim, mlp_dim),
|
108 |
+
nn.GELU(),
|
109 |
+
nn.Dropout(dropout)
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, img, mask = None):
|
113 |
+
p = self.patch_size
|
114 |
+
|
115 |
+
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
|
116 |
+
x = self.patch_to_embedding(x)
|
117 |
+
b, n, _ = x.shape
|
118 |
+
|
119 |
+
cls_tokens = self.cls_token.expand(b, -1, -1)
|
120 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
121 |
+
x += self.pos_embedding[:, :(n + 1)]
|
122 |
+
x = self.dropout(x)
|
123 |
+
|
124 |
+
x = self.transformer(x, mask)
|
125 |
+
|
126 |
+
x = self.to_cls_token(x[:, 0])
|
127 |
+
return self.mlp_head(x)
|