|
import pandas as pd |
|
import numpy as np |
|
import cv2 |
|
import statistics |
|
from tqdm import tqdm |
|
from glob import glob |
|
|
|
def calculate_normalization_parameters(path=None): |
|
|
|
data = glob('NIH/images/*.png') |
|
mean = 0 |
|
std = 0 |
|
height = [] |
|
width = [] |
|
for i in tqdm(data): |
|
image = cv2.imread(i)[:, :, ::-1] |
|
h, w, _ = image.shape |
|
image = image.reshape(-1, 3) |
|
mean += np.mean(image, axis=0) |
|
std += np.std(image, axis=0) |
|
height.append(h) |
|
width.append(w) |
|
mean = mean / (255 * len(data)) |
|
std = std / (255 * len(data)) |
|
print("median height:", statistics.median(height)) |
|
print("median width:", statistics.median(width)) |
|
print("mean:", mean) |
|
print("std:", std) |
|
return mean, std |
|
|
|
|
|
calculate_normalization_parameters() |