crcdng commited on
Commit
a560d7f
1 Parent(s): d096caa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -11
README.md CHANGED
@@ -4,9 +4,24 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - marsyas/gtzan
 
 
7
  model-index:
8
  - name: distilhubert-finetuned-gtzan
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,13 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
18
  It achieves the following results on the evaluation set:
19
- - eval_loss: 0.5092
20
- - eval_accuracy: 0.8824
21
- - eval_runtime: 17.8602
22
- - eval_samples_per_second: 1.904
23
- - eval_steps_per_second: 0.504
24
- - epoch: 2.0
25
- - step: 150
26
 
27
  ## Model description
28
 
@@ -42,13 +52,22 @@ More information needed
42
 
43
  The following hyperparameters were used during training:
44
  - learning_rate: 5e-05
45
- - train_batch_size: 4
46
- - eval_batch_size: 4
47
  - seed: 42
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
  - lr_scheduler_warmup_ratio: 0.1
51
- - num_epochs: 13
 
 
 
 
 
 
 
 
 
52
 
53
  ### Framework versions
54
 
 
4
  - generated_from_trainer
5
  datasets:
6
  - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
  model-index:
10
  - name: distilhubert-finetuned-gtzan
11
+ results:
12
+ - task:
13
+ name: Audio Classification
14
+ type: audio-classification
15
+ dataset:
16
+ name: GTZAN
17
+ type: marsyas/gtzan
18
+ config: all
19
+ split: train
20
+ args: all
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8823529411764706
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.8092
35
+ - Accuracy: 0.8824
 
 
 
 
 
36
 
37
  ## Model description
38
 
 
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
  - seed: 42
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 3
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.5308 | 1.0 | 38 | 1.4348 | 0.6471 |
68
+ | 1.0143 | 2.0 | 76 | 0.9504 | 0.8824 |
69
+ | 0.8684 | 3.0 | 114 | 0.8092 | 0.8824 |
70
+
71
 
72
  ### Framework versions
73